summaryrefslogtreecommitdiff
path: root/core/net_crypto.c
blob: 3b5b67f441f4681c6efe39bbc0581f015221a2c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
/* net_crypto.c
 *
 * Functions for the core network crypto.
 * See also: docs/Crypto.txt
 *
 * NOTE: This code has to be perfect. We don't mess around with encryption.
 *
 *  Copyright (C) 2013 Tox project All Rights Reserved.
 *
 *  This file is part of Tox.
 *
 *  Tox is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  Tox is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with Tox.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include "net_crypto.h"

/* Our public and secret keys. */
uint8_t self_public_key[crypto_box_PUBLICKEYBYTES];
uint8_t self_secret_key[crypto_box_SECRETKEYBYTES];

typedef struct {
    uint8_t public_key[crypto_box_PUBLICKEYBYTES]; /* the real public key of the peer. */
    uint8_t recv_nonce[crypto_box_NONCEBYTES]; /* nonce of received packets */
    uint8_t sent_nonce[crypto_box_NONCEBYTES]; /* nonce of sent packets. */
    uint8_t sessionpublic_key[crypto_box_PUBLICKEYBYTES]; /* our public key for this session. */
    uint8_t sessionsecret_key[crypto_box_SECRETKEYBYTES]; /* our private key for this session. */
    uint8_t peersessionpublic_key[crypto_box_PUBLICKEYBYTES]; /* The public key of the peer. */
    uint8_t status; /* 0 if no connection, 1 we have sent a handshake, 2 if connexion is not confirmed yet
                       (we have received a handshake but no empty data packet), 3 if the connection is established.
                       4 if the connection is timed out. */
    uint16_t number; /* Lossless_UDP connection number corresponding to this connection. */

} Crypto_Connection;

#define MAX_CRYPTO_CONNECTIONS 256

static Crypto_Connection crypto_connections[MAX_CRYPTO_CONNECTIONS];

#define CONN_NO_CONNECTION 0
#define CONN_HANDSHAKE_SENT 1
#define CONN_NOT_CONFIRMED 2
#define CONN_ESTABLISHED 3
#define CONN_TIMED_OUT 4

#define MAX_INCOMING 64

/* keeps track of the connection numbers for friends request so we can check later if they were sent */
static int incoming_connections[MAX_INCOMING];

/* encrypts plain of length length to encrypted of length + 16 using the
   public key(32 bytes) of the receiver and the secret key of the sender and a 24 byte nonce
   return -1 if there was a problem.
   return length of encrypted data if everything was fine. */
int encrypt_data(uint8_t *public_key, uint8_t *secret_key, uint8_t *nonce,
                 uint8_t *plain, uint32_t length, uint8_t *encrypted)
{
    if (length + crypto_box_MACBYTES > MAX_DATA_SIZE || length == 0)
        return -1;

    uint8_t temp_plain[MAX_DATA_SIZE + crypto_box_BOXZEROBYTES] = {0};
    uint8_t temp_encrypted[MAX_DATA_SIZE + crypto_box_BOXZEROBYTES];

    memcpy(temp_plain + crypto_box_ZEROBYTES, plain, length); /* pad the message with 32 0 bytes. */

    crypto_box(temp_encrypted, temp_plain, length + crypto_box_ZEROBYTES, nonce, public_key, secret_key);

    /* if encryption is successful the first crypto_box_BOXZEROBYTES of the message will be zero
       apparently memcmp should not be used so we do this instead:*/
    uint32_t i;
    uint32_t check = 0;
    for(i = 0; i < crypto_box_BOXZEROBYTES; ++i) {
            check |= temp_encrypted[i] ^ 0;
    }
    if(check != 0)
        return -1;

    /* unpad the encrypted message */
    memcpy(encrypted, temp_encrypted + crypto_box_BOXZEROBYTES, length + crypto_box_MACBYTES);
    return length - crypto_box_BOXZEROBYTES + crypto_box_ZEROBYTES;
}

/* decrypts encrypted of length length to plain of length length - 16 using the
   public key(32 bytes) of the sender, the secret key of the receiver and a 24 byte nonce
   return -1 if there was a problem(decryption failed)
   return length of plain data if everything was fine. */
int decrypt_data(uint8_t *public_key, uint8_t *secret_key, uint8_t *nonce,
                 uint8_t *encrypted, uint32_t length, uint8_t *plain)
{
    if (length > MAX_DATA_SIZE || length <= crypto_box_BOXZEROBYTES)
        return -1;

    uint8_t temp_plain[MAX_DATA_SIZE + crypto_box_BOXZEROBYTES];
    uint8_t temp_encrypted[MAX_DATA_SIZE + crypto_box_BOXZEROBYTES] = {0};

    memcpy(temp_encrypted + crypto_box_BOXZEROBYTES, encrypted, length); /* pad the message with 16 0 bytes. */

    if (crypto_box_open(temp_plain, temp_encrypted, length + crypto_box_BOXZEROBYTES,
                        nonce, public_key, secret_key) == -1)
        return -1;

    /* if decryption is successful the first crypto_box_ZEROBYTES of the message will be zero 
       apparently memcmp should not be used so we do this instead:*/
    uint32_t i;
    uint32_t check = 0;
    for(i = 0; i < crypto_box_ZEROBYTES; ++i) {
            check |= temp_plain[i] ^ 0;
    }
    if(check != 0)
        return -1;

    /* unpad the plain message */
    memcpy(plain, temp_plain + crypto_box_ZEROBYTES, length - crypto_box_MACBYTES);
    return length - crypto_box_ZEROBYTES + crypto_box_BOXZEROBYTES;
}

/* increment the given nonce by 1 */
void increment_nonce(uint8_t *nonce)
{
    uint32_t i;
    for (i = 0; i < crypto_box_NONCEBYTES; ++i) {
        ++nonce[i];
        if(nonce[i] != 0)
            break;
    }
}

/* fill the given nonce with random bytes. */
void random_nonce(uint8_t *nonce)
{
    uint32_t i, temp;
    for (i = 0; i < crypto_box_NONCEBYTES / 4; ++i) {
        temp = random_int();
        memcpy(nonce + 4 * i, &temp, 4);
    }
}

/* return 0 if there is no received data in the buffer
   return -1  if the packet was discarded.
   return length of received data if successful */
int read_cryptpacket(int crypt_connection_id, uint8_t *data)
{
    if (crypt_connection_id < 0 || crypt_connection_id >= MAX_CRYPTO_CONNECTIONS)
        return 0;
    if (crypto_connections[crypt_connection_id].status != CONN_ESTABLISHED)
        return 0;
    uint8_t temp_data[MAX_DATA_SIZE];
    int length = read_packet(crypto_connections[crypt_connection_id].number, temp_data);
    if (length == 0)
        return 0;
    if (temp_data[0] != 3)
        return -1;
    int len = decrypt_data(crypto_connections[crypt_connection_id].peersessionpublic_key,
                           crypto_connections[crypt_connection_id].sessionsecret_key,
                           crypto_connections[crypt_connection_id].recv_nonce, temp_data + 1, length - 1, data);
    if (len != -1) {
        increment_nonce(crypto_connections[crypt_connection_id].recv_nonce);
        return len;
    }
    return -1;
}

/* return 0 if data could not be put in packet queue
   return 1 if data was put into the queue */
int write_cryptpacket(int crypt_connection_id, uint8_t *data, uint32_t length)
{
    if (crypt_connection_id < 0 || crypt_connection_id >= MAX_CRYPTO_CONNECTIONS)
        return 0;
    if (length - crypto_box_BOXZEROBYTES + crypto_box_ZEROBYTES > MAX_DATA_SIZE - 1)
        return 0;
    if (crypto_connections[crypt_connection_id].status != CONN_ESTABLISHED)
        return 0;
    uint8_t temp_data[MAX_DATA_SIZE];
    int len = encrypt_data(crypto_connections[crypt_connection_id].peersessionpublic_key,
                           crypto_connections[crypt_connection_id].sessionsecret_key,
                           crypto_connections[crypt_connection_id].sent_nonce, data, length, temp_data + 1);
    if (len == -1)
        return 0;
    temp_data[0] = 3;
    if (write_packet(crypto_connections[crypt_connection_id].number, temp_data, len + 1) == 0)
        return 0;
    increment_nonce(crypto_connections[crypt_connection_id].sent_nonce);
    return 1;
}

/* create a request to peer with public_key.
   packet must be an array of MAX_DATA_SIZE big.
   Data represents the data we send with the request with length being the length of the data.
   request_id is the id of the request (32 = friend request, 254 = ping request)
   returns -1 on failure
   returns the length of the created packet on success */
int create_request(uint8_t *packet, uint8_t *public_key, uint8_t *data, uint32_t length, uint8_t request_id)
{
    if (MAX_DATA_SIZE < length + 1 + crypto_box_PUBLICKEYBYTES * 2 + crypto_box_NONCEBYTES + ENCRYPTION_PADDING)
        return -1;
    uint8_t nonce[crypto_box_NONCEBYTES];
    random_nonce(nonce);
    int len = encrypt_data(public_key, self_secret_key, nonce, data, length,
                           1 + crypto_box_PUBLICKEYBYTES * 2 + crypto_box_NONCEBYTES + packet);
    if (len == -1)
        return -1;
    packet[0] = request_id;
    memcpy(packet + 1, public_key, crypto_box_PUBLICKEYBYTES);
    memcpy(packet + 1 + crypto_box_PUBLICKEYBYTES, self_public_key, crypto_box_PUBLICKEYBYTES);
    memcpy(packet + 1 + crypto_box_PUBLICKEYBYTES * 2, nonce, crypto_box_NONCEBYTES);

    return len + 1 + crypto_box_PUBLICKEYBYTES * 2 + crypto_box_NONCEBYTES;
}

/* puts the senders public key in the request in public_key, the data from the request
   in data if a friend or ping request was sent to us and returns the length of the data.
   packet is the request packet and length is its length
   return -1 if not valid request. */
int handle_request(uint8_t *public_key, uint8_t *data, uint8_t *packet, uint16_t length)
{

    if (length > crypto_box_PUBLICKEYBYTES * 2 + crypto_box_NONCEBYTES + 1 + ENCRYPTION_PADDING &&
        length <= MAX_DATA_SIZE + ENCRYPTION_PADDING &&
        memcmp(packet + 1, self_public_key, crypto_box_PUBLICKEYBYTES) == 0) {
        memcpy(public_key, packet + 1 + crypto_box_PUBLICKEYBYTES, crypto_box_PUBLICKEYBYTES);
        uint8_t nonce[crypto_box_NONCEBYTES];
        memcpy(nonce, packet + 1 + crypto_box_PUBLICKEYBYTES * 2, crypto_box_NONCEBYTES);
        int len1 = decrypt_data(public_key, self_secret_key, nonce, packet + 1 + crypto_box_PUBLICKEYBYTES * 2 + crypto_box_NONCEBYTES,
                                length - (crypto_box_PUBLICKEYBYTES * 2 + crypto_box_NONCEBYTES + 1), data);
        if(len1 == -1)
            return -1;
        return len1;
    } else
        return -1;
}

/* Send a crypto handshake packet containing an encrypted secret nonce and session public key
   to peer with connection_id and public_key
   the packet is encrypted with a random nonce which is sent in plain text with the packet */
int send_cryptohandshake(int connection_id, uint8_t *public_key, uint8_t *secret_nonce, uint8_t *session_key)
{
    uint8_t temp_data[MAX_DATA_SIZE];
    uint8_t temp[crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES];
    uint8_t nonce[crypto_box_NONCEBYTES];

    random_nonce(nonce);
    memcpy(temp, secret_nonce, crypto_box_NONCEBYTES);
    memcpy(temp + crypto_box_NONCEBYTES, session_key, crypto_box_PUBLICKEYBYTES);

    int len = encrypt_data(public_key, self_secret_key, nonce, temp, crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES,
                           1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES + temp_data);
    if (len == -1)
        return 0;
    temp_data[0] = 2;
    memcpy(temp_data + 1, self_public_key, crypto_box_PUBLICKEYBYTES);
    memcpy(temp_data + 1 + crypto_box_PUBLICKEYBYTES, nonce, crypto_box_NONCEBYTES);
    return write_packet(connection_id, temp_data, len + 1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES);
}

/* Extract secret nonce, session public key and public_key from a packet(data) with length length
   return 1 if successful
   return 0 if failure */
int handle_cryptohandshake(uint8_t *public_key, uint8_t *secret_nonce,
                           uint8_t *session_key, uint8_t *data, uint16_t length)
{
    int pad = (- crypto_box_BOXZEROBYTES + crypto_box_ZEROBYTES);
    if (length != 1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES
        + crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES + pad) {
        return 0;
    }
    if (data[0] != 2)
        return 0;
    uint8_t temp[crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES];

    memcpy(public_key, data + 1, crypto_box_PUBLICKEYBYTES);

    int len = decrypt_data(public_key, self_secret_key, data + 1 + crypto_box_PUBLICKEYBYTES,
                           data + 1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES,
                           crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES + pad, temp);

    if (len != crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES)
        return 0;

    memcpy(secret_nonce, temp, crypto_box_NONCEBYTES);
    memcpy(session_key, temp + crypto_box_NONCEBYTES, crypto_box_PUBLICKEYBYTES);
    return 1;
}

/* get crypto connection id from public key of peer
   return -1 if there are no connections like we are looking for
   return id if it found it */
int getcryptconnection_id(uint8_t *public_key)
{
    uint32_t i;
    for (i = 0; i < MAX_CRYPTO_CONNECTIONS; ++i) {
        if (crypto_connections[i].status != CONN_NO_CONNECTION)
            if (memcmp(public_key, crypto_connections[i].public_key, crypto_box_PUBLICKEYBYTES) == 0)
                return i;
    }
    return -1;
}

/* Start a secure connection with other peer who has public_key and ip_port
   returns -1 if failure
   returns crypt_connection_id of the initialized connection if everything went well. */
int crypto_connect(uint8_t *public_key, IP_Port ip_port)
{
    uint32_t i;
    int id = getcryptconnection_id(public_key);
    if (id != -1) {
        IP_Port c_ip = connection_ip(crypto_connections[id].number);
        if(c_ip.ip.i == ip_port.ip.i && c_ip.port == ip_port.port)
            return -1;
    }
    for (i = 0; i < MAX_CRYPTO_CONNECTIONS; ++i) {
        if (crypto_connections[i].status == CONN_NO_CONNECTION) {
            int id = new_connection(ip_port);
            if (id == -1)
                return -1;
            crypto_connections[i].number = id;
            crypto_connections[i].status = CONN_HANDSHAKE_SENT;
            random_nonce(crypto_connections[i].recv_nonce);
            memcpy(crypto_connections[i].public_key, public_key, crypto_box_PUBLICKEYBYTES);
            crypto_box_keypair(crypto_connections[i].sessionpublic_key, crypto_connections[i].sessionsecret_key);

            if (send_cryptohandshake(id, public_key, crypto_connections[i].recv_nonce,
                                     crypto_connections[i].sessionpublic_key) == 1) {
                increment_nonce(crypto_connections[i].recv_nonce);
                return i;
            }
            return -1; /* this should never happen. */
        }
    }
    return -1;
}

/* handle an incoming connection
   return -1 if no crypto inbound connection
   return incoming connection id (Lossless_UDP one) if there is an incoming crypto connection
   Put the public key of the peer in public_key, the secret_nonce from the handshake into secret_nonce
   and the session public key for the connection in session_key
   to accept it see: accept_crypto_inbound(...)
   to refuse it just call kill_connection(...) on the connection id */
int crypto_inbound(uint8_t *public_key, uint8_t *secret_nonce, uint8_t *session_key)
{
    uint32_t i;
    for (i = 0; i < MAX_INCOMING; ++i) {
        if (incoming_connections[i] != -1) {
            if (is_connected(incoming_connections[i]) == 4 || is_connected(incoming_connections[i]) == 0) {
                kill_connection(incoming_connections[i]);
                incoming_connections[i] = -1;
                continue;
            }
            if (id_packet(incoming_connections[i]) == 2) {
                uint8_t temp_data[MAX_DATA_SIZE];
                uint16_t len = read_packet(incoming_connections[i], temp_data);
                if (handle_cryptohandshake(public_key, secret_nonce, session_key, temp_data, len)) {
                    int connection_id = incoming_connections[i];
                    incoming_connections[i] = -1; /* remove this connection from the incoming connection list. */
                    return connection_id;
                }
            }
        }
    }
    return -1;
}

/* kill a crypto connection
   return 0 if killed successfully
   return 1 if there was a problem. */
int crypto_kill(int crypt_connection_id)
{
    if (crypt_connection_id < 0 || crypt_connection_id >= MAX_CRYPTO_CONNECTIONS)
        return 1;
    if (crypto_connections[crypt_connection_id].status != CONN_NO_CONNECTION) {
        crypto_connections[crypt_connection_id].status = CONN_NO_CONNECTION;
        kill_connection(crypto_connections[crypt_connection_id].number);
        memset(&crypto_connections[crypt_connection_id], 0 ,sizeof(Crypto_Connection));
        crypto_connections[crypt_connection_id].number = ~0;
        return 0;
    }
    return 1;
}

/* accept an incoming connection using the parameters provided by crypto_inbound
   return -1 if not successful
   returns the crypt_connection_id if successful */
int accept_crypto_inbound(int connection_id, uint8_t *public_key, uint8_t *secret_nonce, uint8_t *session_key)
{
    uint32_t i;
    if (connection_id == -1)
        return -1;
    /*
    if(getcryptconnection_id(public_key) != -1)
    {
        return -1;
    }*/
    for (i = 0; i < MAX_CRYPTO_CONNECTIONS; ++i) {
        if(crypto_connections[i].status == CONN_NO_CONNECTION) {
            crypto_connections[i].number = connection_id;
            crypto_connections[i].status = CONN_NOT_CONFIRMED;
            random_nonce(crypto_connections[i].recv_nonce);
            memcpy(crypto_connections[i].sent_nonce, secret_nonce, crypto_box_NONCEBYTES);
            memcpy(crypto_connections[i].peersessionpublic_key, session_key, crypto_box_PUBLICKEYBYTES);
            increment_nonce(crypto_connections[i].sent_nonce);
            memcpy(crypto_connections[i].public_key, public_key, crypto_box_PUBLICKEYBYTES);

            crypto_box_keypair(crypto_connections[i].sessionpublic_key, crypto_connections[i].sessionsecret_key);

            if (send_cryptohandshake(connection_id, public_key, crypto_connections[i].recv_nonce,
                                     crypto_connections[i].sessionpublic_key) == 1) {
                increment_nonce(crypto_connections[i].recv_nonce);
                uint32_t zero = 0;
                crypto_connections[i].status = CONN_ESTABLISHED; /* connection status needs to be 3 for write_cryptpacket() to work */
                write_cryptpacket(i, ((uint8_t *)&zero), sizeof(zero));
                crypto_connections[i].status = CONN_NOT_CONFIRMED; /* set it to its proper value right after. */
                return i;
            }
            return -1; /* this should never happen. */
        }
    }
    return -1;
}

/* return 0 if no connection, 1 we have sent a handshake, 2 if connection is not confirmed yet
   (we have received a handshake but no empty data packet), 3 if the connection is established.
   4 if the connection is timed out and waiting to be killed */
int is_cryptoconnected(int crypt_connection_id)
{
    if (crypt_connection_id >= 0 && crypt_connection_id < MAX_CRYPTO_CONNECTIONS)
        return crypto_connections[crypt_connection_id].status;
    return CONN_NO_CONNECTION;
}

/* Generate our public and private keys
   Only call this function the first time the program starts. */
void new_keys()
{
    crypto_box_keypair(self_public_key,self_secret_key);
}

/* save the public and private keys to the keys array
   Length must be crypto_box_PUBLICKEYBYTES + crypto_box_SECRETKEYBYTES */
void save_keys(uint8_t *keys)
{
    memcpy(keys, self_public_key, crypto_box_PUBLICKEYBYTES);
    memcpy(keys + crypto_box_PUBLICKEYBYTES, self_secret_key, crypto_box_SECRETKEYBYTES);
}

/* load the public and private keys from the keys array
   Length must be crypto_box_PUBLICKEYBYTES + crypto_box_SECRETKEYBYTES */
void load_keys(uint8_t *keys)
{
    memcpy(self_public_key, keys, crypto_box_PUBLICKEYBYTES);
    memcpy(self_secret_key, keys + crypto_box_PUBLICKEYBYTES, crypto_box_SECRETKEYBYTES);
}

/* TODO: optimize this
   adds an incoming connection to the incoming_connection list.
   returns 0 if successful
   returns 1 if failure */
int new_incoming(int id)
{
    uint32_t i;
    for (i = 0; i < MAX_INCOMING; ++i) {
        if (incoming_connections[i] == -1) {
            incoming_connections[i] = id;
            return 0;
        }
    }
    return 1;
}

/* TODO: optimize this
   handle all new incoming connections. */
static void handle_incomings()
{
    int income;
    while (1) {
        income = incoming_connection();
        if(income == -1 || new_incoming(income) )
            break;
    }
}

/* handle received packets for not yet established crypto connections. */
static void receive_crypto()
{
    uint32_t i;
    for (i = 0; i < MAX_CRYPTO_CONNECTIONS; ++i) {
        if (crypto_connections[i].status == CONN_HANDSHAKE_SENT) {
            uint8_t temp_data[MAX_DATA_SIZE];
            uint8_t secret_nonce[crypto_box_NONCEBYTES];
            uint8_t public_key[crypto_box_PUBLICKEYBYTES];
            uint8_t session_key[crypto_box_PUBLICKEYBYTES];
            uint16_t len;
            if (id_packet(crypto_connections[i].number) == 1)
                /* if the packet is a friend request drop it (because we are already friends) */
                len = read_packet(crypto_connections[i].number, temp_data);
            if (id_packet(crypto_connections[i].number) == 2) { /* handle handshake packet. */
                len = read_packet(crypto_connections[i].number, temp_data);
                if (handle_cryptohandshake(public_key, secret_nonce, session_key, temp_data, len)) {
                    if (memcmp(public_key, crypto_connections[i].public_key, crypto_box_PUBLICKEYBYTES) == 0) {
                        memcpy(crypto_connections[i].sent_nonce, secret_nonce, crypto_box_NONCEBYTES);
                        memcpy(crypto_connections[i].peersessionpublic_key, session_key, crypto_box_PUBLICKEYBYTES);
                        increment_nonce(crypto_connections[i].sent_nonce);
                        uint32_t zero = 0;
                        crypto_connections[i].status = CONN_ESTABLISHED; /* connection status needs to be 3 for write_cryptpacket() to work */
                        write_cryptpacket(i, ((uint8_t *)&zero), sizeof(zero));
                        crypto_connections[i].status = CONN_NOT_CONFIRMED; /* set it to its proper value right after. */
                    }
                }
            } else if (id_packet(crypto_connections[i].number) != -1) // This should not happen kill the connection if it does
                crypto_kill(crypto_connections[i].number);

        }
        if (crypto_connections[i].status == CONN_NOT_CONFIRMED) {
            if (id_packet(crypto_connections[i].number) == CONN_ESTABLISHED) {
                uint8_t temp_data[MAX_DATA_SIZE];
                uint8_t data[MAX_DATA_SIZE];
                int length = read_packet(crypto_connections[i].number, temp_data);
                int len = decrypt_data(crypto_connections[i].peersessionpublic_key,
                                       crypto_connections[i].sessionsecret_key,
                                       crypto_connections[i].recv_nonce, temp_data + 1, length - 1, data);
                uint32_t zero = 0;
                if (len == sizeof(uint32_t) && memcmp(((uint8_t *)&zero), data, sizeof(uint32_t)) == 0) {
                    increment_nonce(crypto_connections[i].recv_nonce);
                    crypto_connections[i].status = CONN_ESTABLISHED;

                    /* connection is accepted so we disable the auto kill by setting it to about 1 month from now. */
                    kill_connection_in(crypto_connections[i].number, 3000000);
                } else
                    crypto_kill(crypto_connections[i].number); // This should not happen kill the connection if it does
            } else if(id_packet(crypto_connections[i].number) != -1)
                /* This should not happen
                   kill the connection if it does */
                crypto_kill(crypto_connections[i].number);
        }
    }
}

/* run this to (re)initialize net_crypto
   sets all the global connection variables to their default values. */
void initNetCrypto()
{
    memset(crypto_connections, 0 ,sizeof(crypto_connections));
    memset(incoming_connections, -1 ,sizeof(incoming_connections));
    uint32_t i;
    for (i = 0; i < MAX_CRYPTO_CONNECTIONS; ++i)
        crypto_connections[i].number = ~0;
}

static void killTimedout()
{
    uint32_t i;
    for (i = 0; i < MAX_CRYPTO_CONNECTIONS; ++i) {
        if (crypto_connections[i].status != CONN_NO_CONNECTION && is_connected(crypto_connections[i].number) == 4)
            crypto_connections[i].status = CONN_TIMED_OUT;
        else if (is_connected(crypto_connections[i].number) == 4) {
            kill_connection(crypto_connections[i].number);
            crypto_connections[i].number = ~0;
        }
    }
}

/* main loop */
void doNetCrypto()
{
    /* TODO:check if friend requests were sent correctly
       handle new incoming connections
       handle friend requests */
    handle_incomings();
    receive_crypto();
    killTimedout();
}