1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
|
/* net_crypto.c
*
* Functions for the core network crypto.
* See also: http://wiki.tox.im/index.php/DHT
*
* NOTE: This code has to be perfect. We don't mess around with encryption.
*
* Copyright (C) 2013 Tox project All Rights Reserved.
*
* This file is part of Tox.
*
* Tox is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Tox is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Tox. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "net_crypto.h"
#include "util.h"
static uint8_t crypt_connection_id_not_valid(Net_Crypto *c, int crypt_connection_id)
{
return (uint32_t)crypt_connection_id >= c->crypto_connections_length;
}
/* Use this instead of memcmp; not vulnerable to timing attacks. */
uint8_t crypto_iszero(uint8_t *mem, uint32_t length)
{
uint8_t check = 0;
uint32_t i;
for (i = 0; i < length; ++i) {
check |= mem[i];
}
return check; // We return zero if mem is made out of zeroes.
}
/* Precomputes the shared key from their public_key and our secret_key.
* This way we can avoid an expensive elliptic curve scalar multiply for each
* encrypt/decrypt operation.
* enc_key has to be crypto_box_BEFORENMBYTES bytes long.
*/
void encrypt_precompute(uint8_t *public_key, uint8_t *secret_key, uint8_t *enc_key)
{
crypto_box_beforenm(enc_key, public_key, secret_key);
}
/* Fast encrypt. Depends on enc_key from encrypt_precompute. */
int encrypt_data_fast(uint8_t *enc_key, uint8_t *nonce,
uint8_t *plain, uint32_t length, uint8_t *encrypted)
{
if (length + crypto_box_MACBYTES > MAX_DATA_SIZE || length == 0)
return -1;
uint8_t temp_plain[MAX_DATA_SIZE + crypto_box_ZEROBYTES] = {0};
uint8_t temp_encrypted[MAX_DATA_SIZE + crypto_box_BOXZEROBYTES];
memcpy(temp_plain + crypto_box_ZEROBYTES, plain, length); // Pad the message with 32 0 bytes.
crypto_box_afternm(temp_encrypted, temp_plain, length + crypto_box_ZEROBYTES, nonce, enc_key);
if (crypto_iszero(temp_encrypted, crypto_box_BOXZEROBYTES) != 0)
return -1;
/* Unpad the encrypted message. */
memcpy(encrypted, temp_encrypted + crypto_box_BOXZEROBYTES, length + crypto_box_MACBYTES);
return length + crypto_box_MACBYTES;
}
/* Fast decrypt. Depends on enc_ley from encrypt_precompute. */
int decrypt_data_fast(uint8_t *enc_key, uint8_t *nonce,
uint8_t *encrypted, uint32_t length, uint8_t *plain)
{
if (length > MAX_DATA_SIZE || length <= crypto_box_BOXZEROBYTES)
return -1;
uint8_t temp_plain[MAX_DATA_SIZE + crypto_box_ZEROBYTES];
uint8_t temp_encrypted[MAX_DATA_SIZE + crypto_box_BOXZEROBYTES] = {0};
memcpy(temp_encrypted + crypto_box_BOXZEROBYTES, encrypted, length); // Pad the message with 16 0 bytes.
if (crypto_box_open_afternm(temp_plain, temp_encrypted, length + crypto_box_BOXZEROBYTES,
nonce, enc_key) == -1)
return -1;
/* If decryption is successful the first crypto_box_ZEROBYTES of the message will be zero.
* Apparently memcmp should not be used so we do this instead:
*/
if (crypto_iszero(temp_plain, crypto_box_ZEROBYTES) != 0)
return -1;
/* Unpad the plain message. */
memcpy(plain, temp_plain + crypto_box_ZEROBYTES, length - crypto_box_MACBYTES);
return length - crypto_box_MACBYTES;
}
int encrypt_data(uint8_t *public_key, uint8_t *secret_key, uint8_t *nonce,
uint8_t *plain, uint32_t length, uint8_t *encrypted)
{
uint8_t k[crypto_box_BEFORENMBYTES];
encrypt_precompute(public_key, secret_key, k);
return encrypt_data_fast(k, nonce, plain, length, encrypted);
}
int decrypt_data(uint8_t *public_key, uint8_t *secret_key, uint8_t *nonce,
uint8_t *encrypted, uint32_t length, uint8_t *plain)
{
uint8_t k[crypto_box_BEFORENMBYTES];
encrypt_precompute(public_key, secret_key, k);
return decrypt_data_fast(k, nonce, encrypted, length, plain);
}
int encrypt_data_symmetric(uint8_t *secret_key, uint8_t *nonce, uint8_t *plain, uint32_t length, uint8_t *encrypted)
{
if (length == 0)
return -1;
uint8_t temp_plain[length + crypto_secretbox_ZEROBYTES];
uint8_t temp_encrypted[length + crypto_secretbox_MACBYTES + crypto_secretbox_BOXZEROBYTES];
memset(temp_plain, 0, crypto_secretbox_ZEROBYTES);
memcpy(temp_plain + crypto_secretbox_ZEROBYTES, plain, length); // Pad the message with 32 0 bytes.
crypto_secretbox(temp_encrypted, temp_plain, length + crypto_secretbox_ZEROBYTES, nonce, secret_key);
/* Unpad the encrypted message. */
memcpy(encrypted, temp_encrypted + crypto_secretbox_BOXZEROBYTES, length + crypto_secretbox_MACBYTES);
return length + crypto_secretbox_MACBYTES;
}
int decrypt_data_symmetric(uint8_t *secret_key, uint8_t *nonce, uint8_t *encrypted, uint32_t length, uint8_t *plain)
{
if (length <= crypto_secretbox_BOXZEROBYTES)
return -1;
uint8_t temp_plain[length + crypto_secretbox_ZEROBYTES];
uint8_t temp_encrypted[length + crypto_secretbox_BOXZEROBYTES];
memset(temp_plain, 0, crypto_secretbox_BOXZEROBYTES);
memcpy(temp_encrypted + crypto_secretbox_BOXZEROBYTES, encrypted, length); // Pad the message with 16 0 bytes.
if (crypto_secretbox_open(temp_plain, temp_encrypted, length + crypto_secretbox_BOXZEROBYTES, nonce, secret_key) == -1)
return -1;
memcpy(plain, temp_plain + crypto_secretbox_ZEROBYTES, length - crypto_secretbox_MACBYTES);
return length - crypto_secretbox_MACBYTES;
}
/* Increment the given nonce by 1. */
static void increment_nonce(uint8_t *nonce)
{
uint32_t i;
for (i = 0; i < crypto_box_NONCEBYTES; ++i) {
++nonce[i];
if (nonce[i] != 0)
break;
}
}
#if crypto_box_NONCEBYTES != crypto_secretbox_NONCEBYTES
/*if they no longer equal each other, this function must be split into two.*/
#error random_nonce(): crypto_box_NONCEBYTES must equal crypto_secretbox_NONCEBYTES.
#endif
/* Fill the given nonce with random bytes. */
void random_nonce(uint8_t *nonce)
{
randombytes(nonce, crypto_box_NONCEBYTES);
}
/* Fill a key crypto_secretbox_KEYBYTES big with random bytes */
void new_symmetric_key(uint8_t *key)
{
randombytes(key, crypto_secretbox_KEYBYTES);
}
static uint8_t base_nonce[crypto_box_NONCEBYTES];
static uint8_t nonce_set = 0;
#if crypto_box_NONCEBYTES != crypto_secretbox_NONCEBYTES
/*if they no longer equal each other, this function must be split into two.*/
#error new_nonce(): crypto_box_NONCEBYTES must equal crypto_secretbox_NONCEBYTES.
#endif
/* Gives a nonce guaranteed to be different from previous ones.*/
void new_nonce(uint8_t *nonce)
{
if (nonce_set == 0) {
random_nonce(base_nonce);
nonce_set = 1;
}
increment_nonce(base_nonce);
memcpy(nonce, base_nonce, crypto_box_NONCEBYTES);
}
/* return 0 if there is no received data in the buffer.
* return -1 if the packet was discarded.
* return length of received data if successful.
*/
int read_cryptpacket(Net_Crypto *c, int crypt_connection_id, uint8_t *data)
{
if (crypt_connection_id_not_valid(c, crypt_connection_id))
return 0;
if (c->crypto_connections[crypt_connection_id].status != CRYPTO_CONN_ESTABLISHED)
return 0;
uint8_t temp_data[MAX_DATA_SIZE];
int length = read_packet(c->lossless_udp, c->crypto_connections[crypt_connection_id].number, temp_data);
if (length == 0)
return 0;
if (temp_data[0] != 3)
return -1;
int len = decrypt_data_fast(c->crypto_connections[crypt_connection_id].shared_key,
c->crypto_connections[crypt_connection_id].recv_nonce,
temp_data + 1, length - 1, data);
if (len != -1) {
increment_nonce(c->crypto_connections[crypt_connection_id].recv_nonce);
return len;
}
return -1;
}
/* returns the number of packet slots left in the sendbuffer.
* return 0 if failure.
*/
uint32_t crypto_num_free_sendqueue_slots(Net_Crypto *c, int crypt_connection_id)
{
if (crypt_connection_id_not_valid(c, crypt_connection_id))
return 0;
return num_free_sendqueue_slots(c->lossless_udp, c->crypto_connections[crypt_connection_id].number);
}
/* return 0 if data could not be put in packet queue.
* return 1 if data was put into the queue.
*/
int write_cryptpacket(Net_Crypto *c, int crypt_connection_id, uint8_t *data, uint32_t length)
{
if (crypt_connection_id_not_valid(c, crypt_connection_id))
return 0;
if (length - crypto_box_BOXZEROBYTES + crypto_box_ZEROBYTES > MAX_DATA_SIZE - 1)
return 0;
if (c->crypto_connections[crypt_connection_id].status != CRYPTO_CONN_ESTABLISHED)
return 0;
uint8_t temp_data[MAX_DATA_SIZE];
int len = encrypt_data_fast(c->crypto_connections[crypt_connection_id].shared_key,
c->crypto_connections[crypt_connection_id].sent_nonce,
data, length, temp_data + 1);
if (len == -1)
return 0;
temp_data[0] = 3;
if (write_packet(c->lossless_udp, c->crypto_connections[crypt_connection_id].number, temp_data, len + 1) == 0)
return 0;
increment_nonce(c->crypto_connections[crypt_connection_id].sent_nonce);
return 1;
}
/* Create a request to peer.
* send_public_key and send_secret_key are the pub/secret keys of the sender.
* recv_public_key is public key of reciever.
* packet must be an array of MAX_DATA_SIZE big.
* Data represents the data we send with the request with length being the length of the data.
* request_id is the id of the request (32 = friend request, 254 = ping request).
*
* return -1 on failure.
* return the length of the created packet on success.
*/
int create_request(uint8_t *send_public_key, uint8_t *send_secret_key, uint8_t *packet, uint8_t *recv_public_key,
uint8_t *data, uint32_t length, uint8_t request_id)
{
if (MAX_DATA_SIZE < length + 1 + crypto_box_PUBLICKEYBYTES * 2 + crypto_box_NONCEBYTES + 1 + crypto_box_MACBYTES)
return -1;
uint8_t nonce[crypto_box_NONCEBYTES];
uint8_t temp[MAX_DATA_SIZE];
memcpy(temp + 1, data, length);
temp[0] = request_id;
new_nonce(nonce);
int len = encrypt_data(recv_public_key, send_secret_key, nonce, temp, length + 1,
1 + crypto_box_PUBLICKEYBYTES * 2 + crypto_box_NONCEBYTES + packet);
if (len == -1)
return -1;
packet[0] = NET_PACKET_CRYPTO;
memcpy(packet + 1, recv_public_key, crypto_box_PUBLICKEYBYTES);
memcpy(packet + 1 + crypto_box_PUBLICKEYBYTES, send_public_key, crypto_box_PUBLICKEYBYTES);
memcpy(packet + 1 + crypto_box_PUBLICKEYBYTES * 2, nonce, crypto_box_NONCEBYTES);
return len + 1 + crypto_box_PUBLICKEYBYTES * 2 + crypto_box_NONCEBYTES;
}
/* Puts the senders public key in the request in public_key, the data from the request
* in data if a friend or ping request was sent to us and returns the length of the data.
* packet is the request packet and length is its length.
*
* return -1 if not valid request.
*/
int handle_request(uint8_t *self_public_key, uint8_t *self_secret_key, uint8_t *public_key, uint8_t *data,
uint8_t *request_id, uint8_t *packet, uint16_t length)
{
if (length > crypto_box_PUBLICKEYBYTES * 2 + crypto_box_NONCEBYTES + 1 + crypto_box_MACBYTES &&
length <= MAX_DATA_SIZE) {
if (memcmp(packet + 1, self_public_key, crypto_box_PUBLICKEYBYTES) == 0) {
memcpy(public_key, packet + 1 + crypto_box_PUBLICKEYBYTES, crypto_box_PUBLICKEYBYTES);
uint8_t nonce[crypto_box_NONCEBYTES];
uint8_t temp[MAX_DATA_SIZE];
memcpy(nonce, packet + 1 + crypto_box_PUBLICKEYBYTES * 2, crypto_box_NONCEBYTES);
int len1 = decrypt_data(public_key, self_secret_key, nonce,
packet + 1 + crypto_box_PUBLICKEYBYTES * 2 + crypto_box_NONCEBYTES,
length - (crypto_box_PUBLICKEYBYTES * 2 + crypto_box_NONCEBYTES + 1), temp);
if (len1 == -1 || len1 == 0)
return -1;
request_id[0] = temp[0];
--len1;
memcpy(data, temp + 1, len1);
return len1;
}
}
return -1;
}
void cryptopacket_registerhandler(Net_Crypto *c, uint8_t byte, cryptopacket_handler_callback cb, void *object)
{
c->cryptopackethandlers[byte].function = cb;
c->cryptopackethandlers[byte].object = object;
}
static int cryptopacket_handle(void *object, IP_Port source, uint8_t *packet, uint32_t length)
{
DHT *dht = object;
if (packet[0] == NET_PACKET_CRYPTO) {
if (length <= crypto_box_PUBLICKEYBYTES * 2 + crypto_box_NONCEBYTES + 1 + crypto_box_MACBYTES ||
length > MAX_DATA_SIZE + crypto_box_MACBYTES)
return 1;
if (memcmp(packet + 1, dht->self_public_key, crypto_box_PUBLICKEYBYTES) == 0) { // Check if request is for us.
uint8_t public_key[crypto_box_PUBLICKEYBYTES];
uint8_t data[MAX_DATA_SIZE];
uint8_t number;
int len = handle_request(dht->self_public_key, dht->self_secret_key, public_key, data, &number, packet, length);
if (len == -1 || len == 0)
return 1;
if (!dht->c->cryptopackethandlers[number].function) return 1;
return dht->c->cryptopackethandlers[number].function(dht->c->cryptopackethandlers[number].object, source, public_key,
data, len);
} else { /* If request is not for us, try routing it. */
int retval = route_packet(dht, packet + 1, packet, length);
if ((unsigned int)retval == length)
return 0;
}
}
return 1;
}
/* Send a crypto handshake packet containing an encrypted secret nonce and session public key
* to peer with connection_id and public_key.
* The packet is encrypted with a random nonce which is sent in plain text with the packet.
*/
static int send_cryptohandshake(Net_Crypto *c, int connection_id, uint8_t *public_key, uint8_t *secret_nonce,
uint8_t *session_key)
{
uint8_t temp_data[MAX_DATA_SIZE];
uint8_t temp[crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES];
uint8_t nonce[crypto_box_NONCEBYTES];
new_nonce(nonce);
memcpy(temp, secret_nonce, crypto_box_NONCEBYTES);
memcpy(temp + crypto_box_NONCEBYTES, session_key, crypto_box_PUBLICKEYBYTES);
int len = encrypt_data(public_key, c->self_secret_key, nonce, temp, crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES,
1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES + temp_data);
if (len == -1)
return 0;
temp_data[0] = 2;
memcpy(temp_data + 1, c->self_public_key, crypto_box_PUBLICKEYBYTES);
memcpy(temp_data + 1 + crypto_box_PUBLICKEYBYTES, nonce, crypto_box_NONCEBYTES);
return write_packet(c->lossless_udp, connection_id, temp_data,
len + 1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES);
}
/* Extract secret nonce, session public key and public_key from a packet(data) with length length.
*
* return 1 if successful.
* return 0 if failure.
*/
static int handle_cryptohandshake(Net_Crypto *c, uint8_t *public_key, uint8_t *secret_nonce,
uint8_t *session_key, uint8_t *data, uint16_t length)
{
int pad = (- crypto_box_BOXZEROBYTES + crypto_box_ZEROBYTES);
if (length != 1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES
+ crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES + pad) {
return 0;
}
if (data[0] != 2)
return 0;
uint8_t temp[crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES];
memcpy(public_key, data + 1, crypto_box_PUBLICKEYBYTES);
int len = decrypt_data(public_key, c->self_secret_key, data + 1 + crypto_box_PUBLICKEYBYTES,
data + 1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES,
crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES + pad, temp);
if (len != crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES)
return 0;
memcpy(secret_nonce, temp, crypto_box_NONCEBYTES);
memcpy(session_key, temp + crypto_box_NONCEBYTES, crypto_box_PUBLICKEYBYTES);
return 1;
}
/* Get crypto connection id from public key of peer.
*
* return -1 if there are no connections like we are looking for.
* return id if it found it.
*/
static int getcryptconnection_id(Net_Crypto *c, uint8_t *public_key)
{
uint32_t i;
for (i = 0; i < c->crypto_connections_length; ++i) {
if (c->crypto_connections[i].status != CRYPTO_CONN_NO_CONNECTION)
if (memcmp(public_key, c->crypto_connections[i].public_key, crypto_box_PUBLICKEYBYTES) == 0)
return i;
}
return -1;
}
/* Set the size of the friend list to numfriends.
*
* return -1 if realloc fails.
* return 0 if it succeeds.
*/
static int realloc_cryptoconnection(Net_Crypto *c, uint32_t num)
{
if (num == 0) {
free(c->crypto_connections);
c->crypto_connections = NULL;
return 0;
}
Crypto_Connection *newcrypto_connections = realloc(c->crypto_connections, num * sizeof(Crypto_Connection));
if (newcrypto_connections == NULL)
return -1;
c->crypto_connections = newcrypto_connections;
return 0;
}
/* Start a secure connection with other peer who has public_key and ip_port.
*
* return -1 if failure.
* return crypt_connection_id of the initialized connection if everything went well.
*/
int crypto_connect(Net_Crypto *c, uint8_t *public_key, IP_Port ip_port)
{
uint32_t i;
int id_existing = getcryptconnection_id(c, public_key);
if (id_existing != -1) {
IP_Port c_ip = connection_ip(c->lossless_udp, c->crypto_connections[id_existing].number);
if (ipport_equal(&c_ip, &ip_port))
return -1;
}
if (realloc_cryptoconnection(c, c->crypto_connections_length + 1) == -1
|| c->crypto_connections == NULL)
return -1;
memset(&(c->crypto_connections[c->crypto_connections_length]), 0, sizeof(Crypto_Connection));
c->crypto_connections[c->crypto_connections_length].number = ~0;
for (i = 0; i <= c->crypto_connections_length; ++i) {
if (c->crypto_connections[i].status == CRYPTO_CONN_NO_CONNECTION) {
int id_new = new_connection(c->lossless_udp, ip_port);
if (id_new == -1)
return -1;
c->crypto_connections[i].number = id_new;
c->crypto_connections[i].status = CRYPTO_CONN_HANDSHAKE_SENT;
random_nonce(c->crypto_connections[i].recv_nonce);
memcpy(c->crypto_connections[i].public_key, public_key, crypto_box_PUBLICKEYBYTES);
crypto_box_keypair(c->crypto_connections[i].sessionpublic_key, c->crypto_connections[i].sessionsecret_key);
c->crypto_connections[i].timeout = unix_time() + CRYPTO_HANDSHAKE_TIMEOUT;
if (c->crypto_connections_length == i)
++c->crypto_connections_length;
if (send_cryptohandshake(c, id_new, public_key, c->crypto_connections[i].recv_nonce,
c->crypto_connections[i].sessionpublic_key) == 1) {
increment_nonce(c->crypto_connections[i].recv_nonce);
return i;
}
return -1; /* This should never happen. */
}
}
return -1;
}
/* Handle an incoming connection.
*
* return -1 if no crypto inbound connection.
* return incoming connection id (Lossless_UDP one) if there is an incoming crypto connection.
*
* Put the public key of the peer in public_key, the secret_nonce from the handshake into secret_nonce
* and the session public key for the connection in session_key.
* to accept it see: accept_crypto_inbound(...).
* to refuse it just call kill_connection(...) on the connection id.
*/
int crypto_inbound(Net_Crypto *c, uint8_t *public_key, uint8_t *secret_nonce, uint8_t *session_key)
{
while (1) {
int incoming_con = incoming_connection(c->lossless_udp, 1);
if (incoming_con != -1) {
if (is_connected(c->lossless_udp, incoming_con) == LUDP_TIMED_OUT) {
kill_connection(c->lossless_udp, incoming_con);
continue;
}
if (id_packet(c->lossless_udp, incoming_con) == 2) {
uint8_t temp_data[MAX_DATA_SIZE];
uint16_t len = read_packet_silent(c->lossless_udp, incoming_con, temp_data);
if (handle_cryptohandshake(c, public_key, secret_nonce, session_key, temp_data, len)) {
return incoming_con;
} else {
kill_connection(c->lossless_udp, incoming_con);
}
} else {
kill_connection(c->lossless_udp, incoming_con);
}
} else {
break;
}
}
return -1;
}
/* Kill a crypto connection.
*
* return 0 if killed successfully.
* return 1 if there was a problem.
*/
int crypto_kill(Net_Crypto *c, int crypt_connection_id)
{
if (crypt_connection_id_not_valid(c, crypt_connection_id))
return 1;
if (c->crypto_connections[crypt_connection_id].status != CRYPTO_CONN_NO_CONNECTION) {
c->crypto_connections[crypt_connection_id].status = CRYPTO_CONN_NO_CONNECTION;
kill_connection(c->lossless_udp, c->crypto_connections[crypt_connection_id].number);
memset(&(c->crypto_connections[crypt_connection_id]), 0 , sizeof(Crypto_Connection));
c->crypto_connections[crypt_connection_id].number = ~0;
uint32_t i;
for (i = c->crypto_connections_length; i != 0; --i) {
if (c->crypto_connections[i - 1].status != CRYPTO_CONN_NO_CONNECTION)
break;
}
if (c->crypto_connections_length != i) {
c->crypto_connections_length = i;
realloc_cryptoconnection(c, c->crypto_connections_length);
}
return 0;
}
return 1;
}
/* Accept an incoming connection using the parameters provided by crypto_inbound.
*
* return -1 if not successful.
* return the crypt_connection_id if successful.
*/
int accept_crypto_inbound(Net_Crypto *c, int connection_id, uint8_t *public_key, uint8_t *secret_nonce,
uint8_t *session_key)
{
uint32_t i;
if (discard_packet(c->lossless_udp, connection_id) == -1)
return -1;
/*
* if(getcryptconnection_id(public_key) != -1)
* {
* return -1;
* }
*/
if (realloc_cryptoconnection(c, c->crypto_connections_length + 1) == -1
|| c->crypto_connections == NULL)
return -1;
memset(&(c->crypto_connections[c->crypto_connections_length]), 0, sizeof(Crypto_Connection));
c->crypto_connections[c->crypto_connections_length].number = ~0;
for (i = 0; i <= c->crypto_connections_length; ++i) {
if (c->crypto_connections[i].status == CRYPTO_CONN_NO_CONNECTION) {
c->crypto_connections[i].number = connection_id;
c->crypto_connections[i].status = CRYPTO_CONN_NOT_CONFIRMED;
c->crypto_connections[i].timeout = unix_time() + CRYPTO_HANDSHAKE_TIMEOUT;
random_nonce(c->crypto_connections[i].recv_nonce);
memcpy(c->crypto_connections[i].sent_nonce, secret_nonce, crypto_box_NONCEBYTES);
memcpy(c->crypto_connections[i].peersessionpublic_key, session_key, crypto_box_PUBLICKEYBYTES);
increment_nonce(c->crypto_connections[i].sent_nonce);
memcpy(c->crypto_connections[i].public_key, public_key, crypto_box_PUBLICKEYBYTES);
crypto_box_keypair(c->crypto_connections[i].sessionpublic_key, c->crypto_connections[i].sessionsecret_key);
if (c->crypto_connections_length == i)
++c->crypto_connections_length;
if (send_cryptohandshake(c, connection_id, public_key, c->crypto_connections[i].recv_nonce,
c->crypto_connections[i].sessionpublic_key) == 1) {
increment_nonce(c->crypto_connections[i].recv_nonce);
uint32_t zero = 0;
encrypt_precompute(c->crypto_connections[i].peersessionpublic_key,
c->crypto_connections[i].sessionsecret_key,
c->crypto_connections[i].shared_key);
c->crypto_connections[i].status =
CRYPTO_CONN_ESTABLISHED; /* Connection status needs to be 3 for write_cryptpacket() to work. */
write_cryptpacket(c, i, ((uint8_t *)&zero), sizeof(zero));
c->crypto_connections[i].status = CRYPTO_CONN_NOT_CONFIRMED; /* Set it to its proper value right after. */
return i;
}
return -1; /* This should never happen. */
}
}
return -1;
}
/* return 0 if no connection.
* return 1 we have sent a handshake.
* return 2 if connection is not confirmed yet (we have received a handshake but no empty data packet).
* return 3 if the connection is established.
* return 4 if the connection is timed out and waiting to be killed.
*/
int is_cryptoconnected(Net_Crypto *c, int crypt_connection_id)
{
if ((unsigned int)crypt_connection_id < c->crypto_connections_length)
return c->crypto_connections[crypt_connection_id].status;
return CRYPTO_CONN_NO_CONNECTION;
}
void new_keys(Net_Crypto *c)
{
crypto_box_keypair(c->self_public_key, c->self_secret_key);
}
/* Save the public and private keys to the keys array.
* Length must be crypto_box_PUBLICKEYBYTES + crypto_box_SECRETKEYBYTES.
*/
void save_keys(Net_Crypto *c, uint8_t *keys)
{
memcpy(keys, c->self_public_key, crypto_box_PUBLICKEYBYTES);
memcpy(keys + crypto_box_PUBLICKEYBYTES, c->self_secret_key, crypto_box_SECRETKEYBYTES);
}
/* Load the public and private keys from the keys array.
* Length must be crypto_box_PUBLICKEYBYTES + crypto_box_SECRETKEYBYTES.
*/
void load_keys(Net_Crypto *c, uint8_t *keys)
{
memcpy(c->self_public_key, keys, crypto_box_PUBLICKEYBYTES);
memcpy(c->self_secret_key, keys + crypto_box_PUBLICKEYBYTES, crypto_box_SECRETKEYBYTES);
}
/* Handle received packets for not yet established crypto connections. */
static void receive_crypto(Net_Crypto *c)
{
uint32_t i;
uint64_t temp_time = unix_time();
for (i = 0; i < c->crypto_connections_length; ++i) {
if (c->crypto_connections[i].status == CRYPTO_CONN_NO_CONNECTION)
continue;
if (c->crypto_connections[i].status == CRYPTO_CONN_HANDSHAKE_SENT) {
uint8_t temp_data[MAX_DATA_SIZE];
uint8_t secret_nonce[crypto_box_NONCEBYTES];
uint8_t public_key[crypto_box_PUBLICKEYBYTES];
uint8_t session_key[crypto_box_PUBLICKEYBYTES];
uint16_t len;
if (id_packet(c->lossless_udp, c->crypto_connections[i].number) == 2) { /* Handle handshake packet. */
len = read_packet(c->lossless_udp, c->crypto_connections[i].number, temp_data);
if (handle_cryptohandshake(c, public_key, secret_nonce, session_key, temp_data, len)) {
if (memcmp(public_key, c->crypto_connections[i].public_key, crypto_box_PUBLICKEYBYTES) == 0) {
memcpy(c->crypto_connections[i].sent_nonce, secret_nonce, crypto_box_NONCEBYTES);
memcpy(c->crypto_connections[i].peersessionpublic_key, session_key, crypto_box_PUBLICKEYBYTES);
increment_nonce(c->crypto_connections[i].sent_nonce);
uint32_t zero = 0;
encrypt_precompute(c->crypto_connections[i].peersessionpublic_key,
c->crypto_connections[i].sessionsecret_key,
c->crypto_connections[i].shared_key);
c->crypto_connections[i].status =
CRYPTO_CONN_ESTABLISHED; /* Connection status needs to be 3 for write_cryptpacket() to work. */
write_cryptpacket(c, i, ((uint8_t *)&zero), sizeof(zero));
c->crypto_connections[i].status = CRYPTO_CONN_NOT_CONFIRMED; /* Set it to its proper value right after. */
} else {
/* This should not happen, timeout the connection if it does. */
c->crypto_connections[i].status = CRYPTO_CONN_TIMED_OUT;
}
} else {
/* This should not happen, timeout the connection if it does. */
c->crypto_connections[i].status = CRYPTO_CONN_TIMED_OUT;
}
} else if (id_packet(c->lossless_udp,
c->crypto_connections[i].number) != (uint8_t)~0) {
/* This should not happen, timeout the connection if it does. */
c->crypto_connections[i].status = CRYPTO_CONN_TIMED_OUT;
}
}
if (c->crypto_connections[i].status == CRYPTO_CONN_NOT_CONFIRMED) {
if (id_packet(c->lossless_udp, c->crypto_connections[i].number) == 3) {
uint8_t temp_data[MAX_DATA_SIZE];
uint8_t data[MAX_DATA_SIZE];
int length = read_packet(c->lossless_udp, c->crypto_connections[i].number, temp_data);
int len = decrypt_data(c->crypto_connections[i].peersessionpublic_key,
c->crypto_connections[i].sessionsecret_key,
c->crypto_connections[i].recv_nonce, temp_data + 1, length - 1, data);
uint32_t zero = 0;
if (len == sizeof(uint32_t) && memcmp(((uint8_t *)&zero), data, sizeof(uint32_t)) == 0) {
increment_nonce(c->crypto_connections[i].recv_nonce);
encrypt_precompute(c->crypto_connections[i].peersessionpublic_key,
c->crypto_connections[i].sessionsecret_key,
c->crypto_connections[i].shared_key);
c->crypto_connections[i].status = CRYPTO_CONN_ESTABLISHED;
c->crypto_connections[i].timeout = ~0;
/* Connection is accepted. */
confirm_connection(c->lossless_udp, c->crypto_connections[i].number);
} else {
/* This should not happen, timeout the connection if it does. */
c->crypto_connections[i].status = CRYPTO_CONN_TIMED_OUT;
}
} else if (id_packet(c->lossless_udp, c->crypto_connections[i].number) != (uint8_t)~0) {
/* This should not happen, timeout the connection if it does. */
c->crypto_connections[i].status = CRYPTO_CONN_TIMED_OUT;
}
}
if (temp_time > c->crypto_connections[i].timeout) {
c->crypto_connections[i].status = CRYPTO_CONN_TIMED_OUT;
}
}
}
/* Run this to (re)initialize net_crypto.
* Sets all the global connection variables to their default values.
*/
Net_Crypto *new_net_crypto(Networking_Core *net)
{
unix_time_update();
if (net == NULL)
return NULL;
Net_Crypto *temp = calloc(1, sizeof(Net_Crypto));
if (temp == NULL)
return NULL;
temp->lossless_udp = new_lossless_udp(net);
if (temp->lossless_udp == NULL) {
free(temp);
return NULL;
}
new_keys(temp);
return temp;
}
void init_cryptopackets(void *dht)
{
DHT *s_dht = dht;
networking_registerhandler(s_dht->c->lossless_udp->net, NET_PACKET_CRYPTO, &cryptopacket_handle, s_dht);
}
static void kill_timedout(Net_Crypto *c)
{
uint32_t i;
for (i = 0; i < c->crypto_connections_length; ++i) {
if (c->crypto_connections[i].status != CRYPTO_CONN_NO_CONNECTION
&& is_connected(c->lossless_udp, c->crypto_connections[i].number) == LUDP_TIMED_OUT)
c->crypto_connections[i].status = CRYPTO_CONN_TIMED_OUT;
}
}
/* Main loop. */
void do_net_crypto(Net_Crypto *c)
{
unix_time_update();
do_lossless_udp(c->lossless_udp);
kill_timedout(c);
receive_crypto(c);
}
void kill_net_crypto(Net_Crypto *c)
{
uint32_t i;
for (i = 0; i < c->crypto_connections_length; ++i) {
crypto_kill(c, i);
}
kill_lossless_udp(c->lossless_udp);
memset(c, 0, sizeof(Net_Crypto));
free(c);
}
|