1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE ExplicitNamespaces #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE MagicHash, UnboxedTuples, BangPatterns #-}
{-# LANGUAGE NamedFieldPuns #-}
module Crypto.Tox
( PublicKey
, publicKey
, getPublicKey
, putPublicKey
, SecretKey
, generateSecretKey
, toPublic
, SymmetricKey(..)
, TransportCrypto(..)
, SecretsCache
, newSecretsCache
, Encrypted
, Encrypted8(..)
, type (∘)(..)
, Asymm(..)
, getAsymm
, getAliasedAsymm
, putAsymm
, putAliasedAsymm
, Plain
, encodePlain
, decodePlain
-- , computeSharedSecret
, lookupSharedSecret
, lookupNonceFunction
, lookupNonceFunctionSTM
, encrypt
, decrypt
, Nonce8(..)
, Nonce24(..)
, incrementNonce24
, nonce24ToWord16
, addtoNonce24
, Nonce32(..)
, getRemainingEncrypted
, putEncrypted
, Auth
, Sized(..)
, Size(..)
, State(..)
, zeros32
, zeros24
, decryptSymmetric
, encryptSymmetric
, encodeSecret
, decodeSecret
, xorsum
) where
import Control.Arrow
import Control.Monad
import qualified Crypto.Cipher.ChaChaPoly1305 as Symmetric
import qualified Crypto.Cipher.Salsa as Salsa
import qualified Crypto.Cipher.XSalsa as XSalsa
import qualified Crypto.Error as Cryptonite
import qualified Crypto.MAC.Poly1305 as Poly1305
import Crypto.PubKey.Curve25519
import Data.Bits
import qualified Data.ByteArray as BA
;import Data.ByteArray as BA (ByteArrayAccess, Bytes)
import Data.ByteString as B
import qualified Data.ByteString.Base16 as Base16
import qualified Data.ByteString.Base64 as Base64
import qualified Data.ByteString.Char8 as C8
import Data.Data
import Data.Functor.Contravariant
#if MIN_VERSION_base(4,9,1)
import Data.Kind
#else
import GHC.Exts (Constraint)
#endif
import Data.Ord
import Data.Serialize as S
import Data.Word
import Foreign.Marshal.Alloc
import Foreign.Ptr
import Foreign.Storable
import System.Endian
import qualified Data.ByteString.Internal
import Control.Concurrent.STM
#ifdef CRYPTONITE_BACKPORT
import Crypto.ECC.Class
import Crypto.Error.Types (CryptoFailable (..), throwCryptoError)
#else
import Crypto.ECC
import Crypto.Error
#endif
import Network.Socket (SockAddr)
import GHC.Exts (Word(..),inline)
import GHC.Prim
import Data.Word64Map (fitsInInt)
import Data.MinMaxPSQ (MinMaxPSQ')
import qualified Data.MinMaxPSQ as MM
import Data.Time.Clock.POSIX
import Data.Hashable
import System.IO.Unsafe (unsafeDupablePerformIO)
-- | A 16-byte mac and an arbitrary-length encrypted stream.
newtype Encrypted a = Encrypted ByteString
deriving (Eq,Ord,Data,ByteArrayAccess)
newtype Encrypted8 a = E8 (Encrypted (a,Nonce8))
deriving (Serialize, Show)
newtype (f ∘ g) x = Composed { uncomposed :: f (g x) }
infixr ∘
newtype Auth = Auth Poly1305.Auth deriving (Eq, ByteArrayAccess)
instance Ord Auth where
compare (Auth a) (Auth b) = comparing (BA.convert :: Poly1305.Auth -> Bytes) a b
instance Data Auth where
gfoldl k z x = z x
-- Well, this is a little wonky... XXX
gunfold k z c = k (z (Auth . Poly1305.Auth . (BA.convert :: ByteString -> Bytes)))
toConstr _ = con_Auth
dataTypeOf _ = mkDataType "Crypto.Tox" [con_Auth]
con_Auth :: Constr
con_Auth = mkConstr (dataTypeOf (Auth (error "con_Auth"))) "Auth" [] Prefix
instance Serialize Auth where
get = Auth . Poly1305.Auth . BA.convert <$> getBytes 16
put (Auth (Poly1305.Auth bs)) = putByteString $ BA.convert bs
instance Typeable a => Show (Encrypted a) where
show (Encrypted _) = "Encrypted "++show (typeOf (undefined :: a))
encryptedAuth :: Encrypted a -> Auth
encryptedAuth (Encrypted bs)
| Right auth <- decode (B.take 16 bs) = auth
| otherwise = error "encryptedAuth: insufficient bytes"
authAndBytes :: Encrypted a -> (Auth, ByteString)
authAndBytes (Encrypted bs) = (auth,bs')
where
(as,bs') = B.splitAt 16 bs
Right auth = decode as
-- | Info about a type's serialized length. Either the length is known
-- independently of the value, or the length depends on the value.
data Size a
= VarSize (a -> Int)
| ConstSize !Int
deriving Typeable
instance Contravariant Size where
contramap f sz = case sz of
ConstSize n -> ConstSize n
VarSize g -> VarSize (\x -> g (f x))
instance Monoid (Size a) where
ConstSize x `mappend` ConstSize y = ConstSize (x + y)
VarSize f `mappend` ConstSize y = VarSize $ \x -> f x + y
ConstSize x `mappend` VarSize g = VarSize $ \y -> x + g y
VarSize f `mappend` VarSize g = VarSize $ \x -> f x + g x
mempty = ConstSize 0
class Sized a where size :: Size a
instance Sized a => Serialize (Encrypted a) where
get = case size :: Size a of
VarSize _ -> Encrypted <$> (remaining >>= getBytes)
ConstSize n -> Encrypted <$> getBytes (16 + n) -- 16 extra for Poly1305 mac
put = putEncrypted
instance Sized a => Sized (Encrypted a) where
size = case size :: Size a of
ConstSize n -> ConstSize $ n + 16
VarSize _ -> VarSize $ \(Encrypted bs) -> B.length bs
instance (Sized a, Sized b) => Sized (a,b) where
size = case (size :: Size a, size :: Size b) of
(ConstSize a , ConstSize b) -> ConstSize $ a + b
(VarSize f , ConstSize b) -> VarSize $ \(a, _) -> f a + b
(ConstSize a , VarSize g) -> VarSize $ \(_, b) -> a + g b
(VarSize f , VarSize g) -> VarSize $ \(a, b) -> f a + g b
getRemainingEncrypted :: Get (Encrypted a)
getRemainingEncrypted = Encrypted <$> (remaining >>= getBytes)
putEncrypted :: Encrypted a -> Put
putEncrypted (Encrypted bs) = putByteString bs
newtype Plain (s:: * -> Constraint) a = Plain ByteString
decodePlain :: Serialize a => Plain Serialize a -> Either String a
decodePlain (Plain bs) = decode bs
encodePlain :: Serialize a => a -> Plain Serialize a
encodePlain a = Plain $ encode a
storePlain :: Storable a => a -> IO (Plain Storable a)
storePlain a = Plain <$> BA.create (sizeOf a) (`poke` a)
retrievePlain :: Storable a => Plain Storable a -> IO a
retrievePlain (Plain bs) = BA.withByteArray bs peek
decryptSymmetric :: SymmetricKey -> Nonce24 -> Encrypted a -> Either String (Plain s a)
decryptSymmetric (SymmetricKey symmkey) (Nonce24 n24) (Encrypted bs) = do
let sym_nonce_bytes = B.take 12 n24
(mac, bs'') = B.splitAt 16 bs
symm <- left show . Cryptonite.eitherCryptoError $ do
sym_nonce <- Symmetric.nonce12 sym_nonce_bytes
Symmetric.initialize symmkey sym_nonce
let (ds, symm') = Symmetric.decrypt bs'' symm
auth = Symmetric.finalize symm'
if BA.convert auth /= mac
then Left "symmetricDecipher: Auth fail."
else return $ Plain ds
encryptSymmetric :: SymmetricKey -> Nonce24 -> Plain s x -> Encrypted x
encryptSymmetric (SymmetricKey symmkey) (Nonce24 n24) (Plain bs) = Encrypted es
where
Cryptonite.CryptoPassed es = do
sym_nonce <- Symmetric.nonce12 (BA.take 12 n24)
symm <- Symmetric.initialize symmkey sym_nonce
let (rpath_bs, symm') = Symmetric.encrypt bs symm
auth = Symmetric.finalize symm' -- 16 bytes
return (BA.convert auth `BA.append` rpath_bs)
data State = State Poly1305.State XSalsa.State
decrypt :: State -> Encrypted a -> Either String (Plain s a)
decrypt (State hash crypt) ciphertext
| (a == mac) = Right (Plain m)
| otherwise = Left "decipherAndAuth: auth fail"
where
(mac, c) = authAndBytes ciphertext
m = fst . XSalsa.combine crypt $ c
a = Auth . Poly1305.finalize . Poly1305.update hash $ c
-- Encrypt-then-Mac: Encrypt the cleartext, then compute the MAC on the
-- ciphertext, and prepend it to the ciphertext
encrypt :: State -> Plain s a -> Encrypted a
encrypt (State hash crypt) (Plain m) = Encrypted $ B.append (encode a) c
where
c = fst . XSalsa.combine crypt $ m
a = Auth . Poly1305.finalize . Poly1305.update hash $ c
-- (Poly1305.State, XSalsa.State)
computeSharedSecret :: SecretKey -> PublicKey -> Nonce24 -> State
computeSharedSecret sk recipient = k `seq` \nonce ->
let -- cipher state
st0 = XSalsa.initialize 20 k nonce
-- Poly1305 key
(rs, crypt) = XSalsa.combine st0 zs where Nonce32 zs = zeros32
-- Since rs is 32 bytes, this pattern should never fail...
Cryptonite.CryptoPassed hash = Poly1305.initialize rs
in State hash crypt
where
-- diffie helman
shared = ecdh (Proxy :: Proxy Curve_X25519) sk recipient
-- shared secret XSalsa key
k = hsalsa20 shared zeros24
unsafeFirstWord64 :: ByteArrayAccess ba => ba -> Word64
unsafeFirstWord64 ba = unsafeDupablePerformIO $ BA.withByteArray ba peek
{-# INLINE unsafeFirstWord64 #-}
instance Hashable PublicKey where
hashWithSalt salt pk = hashWithSalt salt (unsafeFirstWord64 pk)
{-# INLINE hashWithSalt #-}
instance Hashable SecretKey where
hashWithSalt salt sk = hashWithSalt salt (unsafeFirstWord64 sk)
{-# INLINE hashWithSalt #-}
instance Ord PublicKey where compare = unsafeCompare32Bytes
{-# INLINE compare #-}
instance Ord SecretKey where compare = unsafeCompare32Bytes
{-# INLINE compare #-}
unsafeCompare32Bytes :: (ByteArrayAccess ba, ByteArrayAccess bb)
=> ba -> bb -> Ordering
unsafeCompare32Bytes ba bb =
unsafeDupablePerformIO $ BA.withByteArray ba
$ \pa -> BA.withByteArray bb
$ \pb -> unsafeCompare32Bytes' 3 pa pb
unsafeCompare32Bytes' :: Int -> Ptr Word64 -> Ptr Word64 -> IO Ordering
unsafeCompare32Bytes' !n !pa !pb = do
a <- peek pa
b <- peek pb
if n == 0
then return $! inline compare a b
else case inline compare a b of
EQ -> unsafeCompare32Bytes' (n - 1)
(pa `plusPtr` 8)
(pb `plusPtr` 8)
neq -> return neq
lookupSharedSecret :: TransportCrypto -> SecretKey -> PublicKey -> Nonce24 -> IO State
lookupSharedSecret crypto sk recipient nonce
= ($ nonce) <$> lookupNonceFunction crypto sk recipient
{-# INLINE lookupNonceFunction #-}
lookupNonceFunction :: TransportCrypto -> SecretKey -> PublicKey -> IO (Nonce24 -> State)
lookupNonceFunction c@(TransportCrypto{secretsCache}) sk recipient = do
now <- getPOSIXTime
atomically $ lookupNonceFunctionSTM now c sk recipient
{-# INLINE lookupNonceFunctionSTM #-}
-- | This version of 'lookupNonceFunction' is STM instead of IO, this means if some later part of
-- of the transaction fails, we may end up forgoing a computation that could have been cached.
-- Use with care. In most circumstances you probably want 'lookupNonceFunction'. It also commits
-- us to using TVars to store the cache.
lookupNonceFunctionSTM :: POSIXTime -> TransportCrypto -> SecretKey -> PublicKey -> STM (Nonce24 -> State)
lookupNonceFunctionSTM now TransportCrypto{secretsCache} sk recipient = do
mm <- readTVar $ sharedSecret secretsCache
case MM.lookup' recipient mm of
Nothing -> do
let miss = computeSharedSecret sk recipient
writeTVar (sharedSecret secretsCache)
(MM.insertTake' 160 recipient (MM.singleton' sk miss (Down now)) (Down now) mm)
return miss
Just (stamp,smm) -> do
let (r,v) = case MM.lookup' sk smm of
Nothing | let miss = computeSharedSecret sk recipient
-> (miss, MM.insertTake' 3 sk miss (Down now) smm)
Just (stamp2,hit) -> (hit , MM.insert' sk hit (Down now) smm)
writeTVar (sharedSecret secretsCache)
(MM.insertTake' 160 recipient v (Down now) mm)
return r
hsalsa20 :: (ByteArrayAccess t, ByteArrayAccess t1) => t1 -> t -> BA.ScrubbedBytes
hsalsa20 k n = BA.append a b
where
Salsa.State st = XSalsa.initialize 20 k n
(_, as) = BA.splitAt 4 st
(a, xs) = BA.splitAt 16 as
(_, bs) = BA.splitAt 24 xs
(b, _ ) = BA.splitAt 16 bs
newtype Nonce24 = Nonce24 ByteString
deriving (Eq, Ord, ByteArrayAccess, Data)
nonce24ToWord16 :: Nonce24 -> Word16
nonce24ToWord16 (Nonce24 n24) = fromIntegral (B.index n24 23) + 256 * fromIntegral (B.index n24 22)
addtoNonce24 :: Nonce24 -> Word -> Nonce24
addtoNonce24 (Nonce24 n24) n = unsafeDupablePerformIO $ Nonce24 <$> BA.copy n24 init
where
init :: Ptr Word -> IO ()
init ptr | fitsInInt (Proxy :: Proxy Word64) = do
let frmBE64 = fromIntegral . fromBE64 . fromIntegral
tBE64 = fromIntegral . toBE64 . fromIntegral
!(W# input) = n
W# w1 <- frmBE64 <$> peek ptr
W# w2 <- frmBE64 <$> peekElemOff ptr 1
W# w3 <- frmBE64 <$> peekElemOff ptr 2
let (# overflw, sum #) = plusWord2# w3 input
(# overflw', sum' #) = plusWord2# w2 overflw
(# discard, sum'' #) = plusWord2# w1 overflw'
poke ptr $ tBE64 (W# sum'')
pokeElemOff ptr 1 $ tBE64 (W# sum')
pokeElemOff ptr 2 $ tBE64 (W# sum)
init ptr | fitsInInt (Proxy :: Proxy Word32) = do
let frmBE32 = fromIntegral . fromBE32 . fromIntegral
tBE32 = fromIntegral . toBE32 . fromIntegral
!(W# input) = n
W# w1 <- frmBE32 <$> peek ptr
W# w2 <- frmBE32 <$> peekElemOff ptr 1
W# w3 <- frmBE32 <$> peekElemOff ptr 2
W# w4 <- frmBE32 <$> peekElemOff ptr 3
W# w5 <- frmBE32 <$> peekElemOff ptr 4
W# w6 <- frmBE32 <$> peekElemOff ptr 5
let (# overflw_, sum_ #) = plusWord2# w6 input
(# overflw__, sum__ #) = plusWord2# w5 overflw_
(# overflw___, sum___ #) = plusWord2# w6 overflw__
(# overflw, sum #) = plusWord2# w3 overflw___
(# overflw', sum' #) = plusWord2# w2 overflw
(# discard, sum'' #) = plusWord2# w1 overflw'
poke ptr $ tBE32 (W# sum'')
pokeElemOff ptr 1 $ tBE32 (W# sum')
pokeElemOff ptr 2 $ tBE32 (W# sum)
pokeElemOff ptr 3 $ tBE32 (W# sum___)
pokeElemOff ptr 4 $ tBE32 (W# sum__)
pokeElemOff ptr 5 $ tBE32 (W# sum_)
init _ = error "incrementNonce24: I only support 64 and 32 bits"
incrementNonce24 :: Nonce24 -> Nonce24
incrementNonce24 nonce24 = addtoNonce24 nonce24 1
{-# INLINE incrementNonce24 #-}
quoted :: ShowS -> ShowS
quoted shows s = '"':shows ('"':s)
bin2hex :: ByteArrayAccess bs => bs -> String
bin2hex = C8.unpack . Base16.encode . BA.convert
bin2base64 :: ByteArrayAccess bs => bs -> String
bin2base64 = C8.unpack . Base64.encode . BA.convert
instance Show Nonce24 where
showsPrec d nonce = quoted (mappend $ bin2hex nonce)
instance Sized Nonce24 where size = ConstSize 24
instance Serialize Nonce24 where
get = Nonce24 <$> getBytes 24
put (Nonce24 bs) = putByteString bs
newtype Nonce8 = Nonce8 Word64
deriving (Eq, Ord, Data, Serialize)
-- Note: Big-endian to match Serialize instance.
instance Storable Nonce8 where
sizeOf _ = 8
alignment _ = alignment (undefined::Word64)
peek ptr = Nonce8 . fromBE64 <$> peek (castPtr ptr)
poke ptr (Nonce8 w) = poke (castPtr ptr) (toBE64 w)
instance Sized Nonce8 where size = ConstSize 8
instance ByteArrayAccess Nonce8 where
length _ = 8
withByteArray (Nonce8 w64) kont =
allocaBytes 8 $ \p -> do
poke (castPtr p :: Ptr Word64) $ toBE64 w64
kont p
instance Show Nonce8 where
showsPrec d nonce = quoted (mappend $ bin2hex nonce)
newtype Nonce32 = Nonce32 ByteString
deriving (Eq, Ord, ByteArrayAccess, Data)
instance Show Nonce32 where
showsPrec d nonce = mappend $ bin2base64 nonce
instance Read Nonce32 where
readsPrec _ str = either (const []) id $ do
let (ds,ss) = Prelude.splitAt 43 str
ss' <- case ss of
'=':xs -> Right xs -- optional terminating '='
_ -> Right ss
bs <- Base64.decode (C8.pack $ ds ++ ['='])
guard $ B.length bs == 32
return [ (Nonce32 bs, ss') ]
instance Serialize Nonce32 where
get = Nonce32 <$> getBytes 32
put (Nonce32 bs) = putByteString bs
instance Sized Nonce32 where size = ConstSize 32
zeros32 :: Nonce32
zeros32 = Nonce32 $ BA.replicate 32 0
zeros24 :: ByteString
zeros24 = BA.take 24 zs where Nonce32 zs = zeros32
-- | `32` | sender's DHT public key |
-- | `24` | nonce |
-- | `?` | encrypted message |
data Asymm a = Asymm
{ senderKey :: PublicKey
, asymmNonce :: Nonce24
, asymmData :: a
}
deriving (Functor,Foldable,Traversable, Show)
instance Sized a => Sized (Asymm a) where
size = case size of
ConstSize a -> ConstSize $ a + 24 + 32
VarSize f -> VarSize $ \Asymm { asymmData = x } -> f x + 24 + 32
-- | Field order: senderKey, then nonce This is the format used by
-- Ping/Pong/GetNodes/SendNodes.
--
-- See 'getAliasedAsymm' if the nonce precedes the key.
getAsymm :: Serialize a => Get (Asymm a)
getAsymm = Asymm <$> getPublicKey <*> get <*> get
putAsymm :: Serialize a => Asymm a -> Put
putAsymm (Asymm key nonce dta) = putPublicKey key >> put nonce >> put dta
-- | Field order: nonce, and then senderKey.
getAliasedAsymm :: Serialize a => Get (Asymm a)
getAliasedAsymm = flip Asymm <$> get <*> getPublicKey <*> get
putAliasedAsymm :: Serialize a => Asymm a -> Put
putAliasedAsymm (Asymm key nonce dta) = put nonce >> putPublicKey key >> put dta
data SecretsCache = SecretsCache
{ sharedSecret :: TVar (MinMaxPSQ' PublicKey
(Down POSIXTime)
(MinMaxPSQ' SecretKey (Down POSIXTime) (Nonce24 -> State)))
}
newSecretsCache :: IO SecretsCache
newSecretsCache = atomically (SecretsCache <$> newTVar MM.empty)
newtype SymmetricKey = SymmetricKey ByteString
instance Show SymmetricKey where
show (SymmetricKey bs) = bin2base64 bs
data TransportCrypto = TransportCrypto
{ transportSecret :: SecretKey
, transportPublic :: PublicKey
, onionAliasSecret :: SecretKey
, onionAliasPublic :: PublicKey
, rendezvousSecret :: SecretKey
, rendezvousPublic :: PublicKey
, transportSymmetric :: STM SymmetricKey
, transportNewNonce :: STM Nonce24
, userKeys :: STM [(SecretKey,PublicKey)]
, pendingCookies :: TVar [(SockAddr, (Int, PublicKey))]
, secretsCache :: SecretsCache
}
getPublicKey :: S.Get PublicKey
getPublicKey = throwCryptoError . publicKey <$> S.getBytes 32
putPublicKey :: PublicKey -> S.Put
putPublicKey bs = S.putByteString $ BA.convert bs
-- 32 bytes -> 42 base64 digits.
--
encodeSecret :: SecretKey -> Maybe C8.ByteString
encodeSecret k = do
(a,bs) <- BA.uncons (BA.convert k)
-- Bytes
-- 1 31
-- a | bs
(cs,c) <- unsnoc bs
-- Bytes
-- 1 30 1
-- a | cs | c
--
-- Based on the following pasted from the generateSecretKey function:
--
-- tweakToSecretKey :: ScrubbedBytes -> SecretKey
-- tweakToSecretKey bin = SecretKey $ B.copyAndFreeze bin $ \inp -> do
-- modifyByte inp 0 (\e0 -> e0 .&. 0xf8)
-- modifyByte inp 31 (\e31 -> (e31 .&. 0x7f) .|. 0x40)
--
-- We know the following holds:
-- a == a .&. 0xf8
-- c == (c .&. 0x7f) .|. 0x40
--
-- Therefore, there are 5 reserved bits:
-- a := aaaa a000
-- c := 01dd cccc
--
-- That gives us 256 - 5 = 251 bits to encode.
-- 42 * 6 = 252
--
let -- We'll reserve the first bit as zero so that the encoded
-- key starts with a digit between A and f. Other digits will be
-- arbitrary.
--
-- The middle 30 bytes will be encoded as is from the source byte
-- string (cs). It remains to compute the first (a') and last (c')
-- bytes.
xs = Base64.encode $ a' `BA.cons` cs `BA.snoc` c'
-- a' := 0aaaaadd
a' = shiftR a 1 .|. (shiftR c 4 .&. 0x03)
-- c' := cccc0000
c' = shiftL c 4
return $ BA.take 42 xs
-- 42 base64 digits. First digit should be between A and f. The rest are
-- arbitrary.
decodeSecret :: C8.ByteString -> Maybe SecretKey
decodeSecret k64 | B.length k64 < 42 = Nothing
decodeSecret k64 = do
xs <- either (const Nothing) Just $ Base64.decode $ B.append k64 "A="
(a',ds) <- B.uncons $ B.take 32 xs
(cs,c') <- B.unsnoc ds
let c = 0x40 .|. shiftR c' 4 .|. ( 0x30 .&. shiftL a' 4)
a = 0xf8 .&. shiftL a' 1
case secretKey $ B.cons a cs `B.snoc` c of
CryptoPassed x -> Just x
_ -> Nothing
-- Treats byte pairs as big-endian.
xorsum :: ByteArrayAccess ba => ba -> Word16
xorsum bs = unsafeDupablePerformIO $ BA.withByteArray bs $ \ptr16 -> do
let (wcnt,r) = BA.length bs `divMod` 2
loop cnt !ac = do
ac' <- xor ac <$> peekElemOff ptr16 cnt
case cnt of 0 -> return $ fromBE16 ac'
_ -> loop (cnt - 1) ac'
loop (wcnt - 1) $ case r of
0 -> 0
_ -> 256 * fromIntegral (BA.index bs (BA.length bs - 1))
|