1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
|
-- |
-- Copyright : (c) Sam Truzjan 2013
-- License : BSD3
-- Maintainer : pxqr.sta@gmail.com
-- Stability : experimental
-- Portability : portable
--
-- Every node maintains a routing table of known good nodes. The
-- nodes in the routing table are used as starting points for
-- queries in the DHT. Nodes from the routing table are returned in
-- response to queries from other nodes.
--
-- For more info see:
-- <http://www.bittorrent.org/beps/bep_0005.html#routing-table>
--
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module Network.BitTorrent.DHT.Routing
( -- * Table
Table
, Info(..)
-- * Attributes
, BucketCount
, defaultBucketCount
, BucketSize
, defaultBucketSize
, NodeCount
-- * Query
, Network.BitTorrent.DHT.Routing.null
, Network.BitTorrent.DHT.Routing.full
, thisId
, shape
, Network.BitTorrent.DHT.Routing.size
, Network.BitTorrent.DHT.Routing.depth
, compatibleNodeId
-- * Lookup
, K
, defaultK
, TableKey (..)
, kclosest
-- * Construction
, Network.BitTorrent.DHT.Routing.nullTable
, Event(..)
, CheckPing(..)
, Network.BitTorrent.DHT.Routing.insert
-- * Conversion
, Network.BitTorrent.DHT.Routing.TableEntry
, Network.BitTorrent.DHT.Routing.toList
-- * Routing
, Timestamp
, Routing
, runRouting
) where
import Control.Applicative as A
import Control.Arrow
import Control.Monad
import Data.Function
import Data.Functor.Identity
import Data.List as L hiding (insert)
import Data.Maybe
import Data.Monoid
import Data.PSQueue as PSQ
import Data.Serialize as S hiding (Result, Done)
import qualified Data.Sequence as Seq
import Data.Time
import Data.Time.Clock.POSIX
import Data.Word
import GHC.Generics
import Text.PrettyPrint as PP hiding ((<>))
import Text.PrettyPrint.HughesPJClass (pPrint,Pretty)
import qualified Data.ByteString as BS
import Data.Bits
import Data.Torrent
import Network.BitTorrent.Address
{-----------------------------------------------------------------------
-- Routing monad
-----------------------------------------------------------------------}
-- | Last time the node was responding to our queries.
--
-- Not all nodes that we learn about are equal. Some are \"good\" and
-- some are not. Many nodes using the DHT are able to send queries
-- and receive responses, but are not able to respond to queries
-- from other nodes. It is important that each node's routing table
-- must contain only known good nodes. A good node is a node has
-- responded to one of our queries within the last 15 minutes. A
-- node is also good if it has ever responded to one of our queries
-- and has sent us a query within the last 15 minutes. After 15
-- minutes of inactivity, a node becomes questionable. Nodes become
-- bad when they fail to respond to multiple queries in a row. Nodes
-- that we know are good are given priority over nodes with unknown
-- status.
--
type Timestamp = POSIXTime
-- | Some routing operations might need to perform additional IO.
data Routing ip result
= Full
| Done result
| GetTime ( Timestamp -> Routing ip result)
| NeedPing (NodeAddr ip) ( Bool -> Routing ip result)
| Refresh NodeId (Routing ip result)
instance Functor (Routing ip) where
fmap _ Full = Full
fmap f (Done r) = Done ( f r)
fmap f (GetTime g) = GetTime (fmap f . g)
fmap f (NeedPing addr g) = NeedPing addr (fmap f . g)
fmap f (Refresh nid g) = Refresh nid (fmap f g)
instance Monad (Routing ip) where
return = Done
Full >>= _ = Full
Done r >>= m = m r
GetTime f >>= m = GetTime $ \ t -> f t >>= m
NeedPing a f >>= m = NeedPing a $ \ p -> f p >>= m
Refresh n f >>= m = Refresh n $ f >>= m
instance Applicative (Routing ip) where
pure = return
(<*>) = ap
instance Alternative (Routing ip) where
empty = Full
Full <|> m = m
Done a <|> _ = Done a
GetTime f <|> m = GetTime $ \ t -> f t <|> m
NeedPing a f <|> m = NeedPing a $ \ p -> f p <|> m
Refresh n f <|> m = Refresh n (f <|> m)
-- | Run routing table operation.
runRouting :: Monad m
=> (NodeAddr ip -> m Bool) -- ^ ping the specific node;
-> (NodeId -> m ()) -- ^ refresh nodes;
-> m Timestamp -- ^ get current time;
-> Routing ip f -- ^ operation to run;
-> m (Maybe f) -- ^ operation result;
runRouting ping_node find_nodes timestamper = go
where
go Full = return (Nothing)
go (Done r) = return (Just r)
go (GetTime f) = do
t <- timestamper
go (f t)
go (NeedPing addr f) = do
pong <- ping_node addr
go (f pong)
go (Refresh nid f) = do
find_nodes nid
go f
{-----------------------------------------------------------------------
Bucket
-----------------------------------------------------------------------}
-- TODO: add replacement cache to the bucket
--
-- When a k-bucket is full and a new node is discovered for that
-- k-bucket, the least recently seen node in the k-bucket is
-- PINGed. If the node is found to be still alive, the new node is
-- place in a secondary list, a replacement cache. The replacement
-- cache is used only if a node in the k-bucket stops responding. In
-- other words: new nodes are used only when older nodes disappear.
-- | Timestamp - last time this node is pinged.
type NodeEntry ip = Binding (NodeInfo ip) Timestamp
instance (Serialize k, Serialize v) => Serialize (Binding k v) where
get = (:->) <$> get <*> get
put (k :-> v) = put k >> put v
-- TODO instance Pretty where
-- | Number of nodes in a bucket.
type BucketSize = Int
-- | Maximum number of 'NodeInfo's stored in a bucket. Most clients
-- use this value.
defaultBucketSize :: BucketSize
defaultBucketSize = 8
data QueueMethods m elem fifo = QueueMethods
{ pushBack :: elem -> fifo -> m fifo
, popFront :: fifo -> m (Maybe elem, fifo)
, emptyQueue :: m fifo
}
{-
fromQ :: Functor m =>
( a -> b )
-> ( b -> a )
-> QueueMethods m elem a
-> QueueMethods m elem b
fromQ embed project QueueMethods{..} =
QueueMethods { pushBack = \e -> fmap embed . pushBack e . project
, popFront = fmap (second embed) . popFront . project
, emptyQueue = fmap embed emptyQueue
}
-}
seqQ :: QueueMethods Identity (NodeInfo ip) (Seq.Seq (NodeInfo ip))
seqQ = QueueMethods
{ pushBack = \e fifo -> pure (fifo Seq.|> e)
, popFront = \fifo -> case Seq.viewl fifo of
e Seq.:< fifo' -> pure (Just e, fifo')
Seq.EmptyL -> pure (Nothing, Seq.empty)
, emptyQueue = pure Seq.empty
}
type BucketQueue ip = Seq.Seq (NodeInfo ip)
bucketQ :: QueueMethods Identity (NodeInfo ip) (BucketQueue ip)
bucketQ = seqQ
-- | Bucket is also limited in its length — thus it's called k-bucket.
-- When bucket becomes full, we should split it in two lists by
-- current span bit. Span bit is defined by depth in the routing
-- table tree. Size of the bucket should be choosen such that it's
-- very unlikely that all nodes in bucket fail within an hour of
-- each other.
--
data Bucket ip = Bucket { bktNodes :: PSQ (NodeInfo ip) Timestamp
, bktQ :: BucketQueue ip
} deriving (Show,Generic)
instance (Eq ip, Serialize ip) => Serialize (Bucket ip)
instance (Serialize k, Serialize v, Ord k, Ord v)
=> Serialize (PSQ k v) where
get = PSQ.fromList <$> get
put = put . PSQ.toList
-- | Update interval, in seconds.
delta :: NominalDiffTime
delta = 15 * 60
-- | Should maintain a set of stable long running nodes.
--
-- Note: pings are triggerd only when a bucket is full.
insertBucket :: (Eq ip, Alternative f) => Timestamp -> Event ip -> Bucket ip
-> f ([CheckPing ip], Bucket ip)
insertBucket curTime (TryInsert info) bucket
-- just update timestamp if a node is already in bucket
| already_have
= pure ( [], map_ns $ PSQ.insertWith max info curTime )
-- bucket is good, but not full => we can insert a new node
| PSQ.size (bktNodes bucket) < defaultBucketSize
= pure ( [], map_ns $ PSQ.insert info curTime )
-- If there are any questionable nodes in the bucket have not been
-- seen in the last 15 minutes, the least recently seen node is
-- pinged. If any nodes in the bucket are known to have become bad,
-- then one is replaced by the new node in the next insertBucket
-- iteration.
| not (L.null stales)
= pure ( [CheckPing stales]
, bucket { -- Update timestamps so that we don't redundantly ping.
bktNodes = updateStamps curTime stales $ bktNodes bucket
-- Update queue with the pending NodeInfo in case of ping fail.
, bktQ = runIdentity $ pushBack bucketQ info $ bktQ bucket } )
-- When the bucket is full of good nodes, the new node is simply discarded.
-- We must return 'A.empty' here to ensure that bucket splitting happens
-- inside 'modifyBucket'.
| otherwise = A.empty
where
-- We (take 1) to keep a 1-to-1 correspondence between pending pings and
-- waiting nodes in the bktQ. This way, we don't have to worry about what
-- to do with failed pings for which there is no ready replacements.
stales = -- One stale:
do (n :-> t) <- maybeToList $ PSQ.findMin (bktNodes bucket)
guard (t < curTime - delta)
return n
-- All stale:
-- map key $ PSQ.atMost (curTime - delta) $ bktNodes bucket
already_have = maybe False (const True) $ PSQ.lookup info (bktNodes bucket)
map_ns f = bucket { bktNodes = f (bktNodes bucket) }
-- map_q f = bucket { bktQ = runIdentity $ f (bktQ bucket) }
insertBucket curTime (PingResult bad_node got_response) bucket
= pure ([], Bucket (upd $ bktNodes bucket) popped)
where
(top, popped) = runIdentity $ popFront bucketQ (bktQ bucket)
upd | got_response = id
| Just info <- top = \nodes ->
fromMaybe nodes $ do
_ <- PSQ.lookup bad_node nodes -- Insert only if there's a removal.
let nodes' = PSQ.delete bad_node nodes
pure $ PSQ.insert info curTime nodes'
| otherwise = id
updateStamps :: Eq ip => Timestamp -> [NodeInfo ip] -> PSQ (NodeInfo ip) Timestamp -> PSQ (NodeInfo ip) Timestamp
updateStamps curTime stales nodes = foldl' (\q n -> PSQ.insert n curTime q) nodes stales
type BitIx = Word
partitionQ :: Monad f => QueueMethods f elem b -> (elem -> Bool) -> b -> f (b, b)
partitionQ imp test q0 = do
pass0 <- emptyQueue imp
fail0 <- emptyQueue imp
let flipfix a b f = fix f a b
flipfix q0 (pass0,fail0) $ \rec q qs -> do
(mb,q') <- popFront imp q
case mb of
Nothing -> return qs
Just e -> do qs' <- select (pushBack imp e) qs
rec q' qs'
where
select :: Functor f => (b -> f b) -> (b, b) -> f (b, b)
select f = if test e then \(a,b) -> flip (,) b <$> f a
else \(a,b) -> (,) a <$> f b
split :: Eq ip => BitIx -> Bucket ip -> (Bucket ip, Bucket ip)
split i b = (Bucket ns qs, Bucket ms rs)
where
(ns,ms) = (PSQ.fromList *** PSQ.fromList) . partition (spanBit . key) . PSQ.toList $ bktNodes b
(qs,rs) = runIdentity $ partitionQ bucketQ spanBit $ bktQ b
spanBit entry = testIdBit (nodeId entry) i
{-----------------------------------------------------------------------
-- Table
-----------------------------------------------------------------------}
-- | Number of buckets in a routing table.
type BucketCount = Int
defaultBucketCount :: BucketCount
defaultBucketCount = 20
data Info ip = Info
{ myBuckets :: Table ip
, myNodeId :: NodeId
, myAddress :: SockAddr
}
deriving (Eq, Show, Generic)
-- instance (Eq ip, Serialize ip) => Serialize (Info ip)
-- | The routing table covers the entire 'NodeId' space from 0 to 2 ^
-- 160. The routing table is subdivided into 'Bucket's that each cover
-- a portion of the space. An empty table has one bucket with an ID
-- space range of @min = 0, max = 2 ^ 160@. When a node with ID \"N\"
-- is inserted into the table, it is placed within the bucket that has
-- @min <= N < max@. An empty table has only one bucket so any node
-- must fit within it. Each bucket can only hold 'K' nodes, currently
-- eight, before becoming 'Full'. When a bucket is full of known good
-- nodes, no more nodes may be added unless our own 'NodeId' falls
-- within the range of the 'Bucket'. In that case, the bucket is
-- replaced by two new buckets each with half the range of the old
-- bucket and the nodes from the old bucket are distributed among the
-- two new ones. For a new table with only one bucket, the full bucket
-- is always split into two new buckets covering the ranges @0..2 ^
-- 159@ and @2 ^ 159..2 ^ 160@.
--
data Table ip
-- most nearest bucket
= Tip NodeId BucketCount (Bucket ip)
-- left biased tree branch
| Zero (Table ip) (Bucket ip)
-- right biased tree branch
| One (Bucket ip) (Table ip)
deriving (Show, Generic)
instance Eq ip => Eq (Table ip) where
(==) = (==) `on` Network.BitTorrent.DHT.Routing.toList
instance Serialize NominalDiffTime where
put = putWord32be . fromIntegral . fromEnum
get = (toEnum . fromIntegral) <$> getWord32be
-- | Normally, routing table should be saved between invocations of
-- the client software. Note that you don't need to store /this/
-- 'NodeId' since it is already included in routing table.
instance (Eq ip, Serialize ip) => Serialize (Table ip)
-- | Shape of the table.
instance Pretty (Table ip) where
pPrint t
| bucketCount < 6 = hcat $ punctuate ", " $ L.map PP.int ss
| otherwise = brackets $
PP.int (L.sum ss) <> " nodes, " <>
PP.int bucketCount <> " buckets"
where
bucketCount = L.length ss
ss = shape t
-- | Empty table with specified /spine/ node id.
nullTable :: Eq ip => NodeId -> BucketCount -> Table ip
nullTable nid n = Tip nid (bucketCount (pred n)) (Bucket PSQ.empty (runIdentity $ emptyQueue bucketQ))
where
bucketCount x = max 0 (min 159 x)
-- | Test if table is empty. In this case DHT should start
-- bootstrapping process until table becomes 'full'.
null :: Table ip -> Bool
null (Tip _ _ b) = PSQ.null $ bktNodes b
null _ = False
-- | Test if table have maximum number of nodes. No more nodes can be
-- 'insert'ed, except old ones becomes bad.
full :: Table ip -> Bool
full (Tip _ n _) = n == 0
full (Zero t b) = PSQ.size (bktNodes b) == defaultBucketSize && full t
full (One b t) = PSQ.size (bktNodes b) == defaultBucketSize && full t
-- | Get the /spine/ node id.
thisId :: Table ip -> NodeId
thisId (Tip nid _ _) = nid
thisId (Zero table _) = thisId table
thisId (One _ table) = thisId table
-- | Number of nodes in a bucket or a table.
type NodeCount = Int
-- | Internally, routing table is similar to list of buckets or a
-- /matrix/ of nodes. This function returns the shape of the matrix.
shape :: Table ip -> [BucketSize]
shape = map (PSQ.size . bktNodes) . toBucketList
-- | Get number of nodes in the table.
size :: Table ip -> NodeCount
size = L.sum . shape
-- | Get number of buckets in the table.
depth :: Table ip -> BucketCount
depth = L.length . shape
lookupBucket :: NodeId -> Table ip -> Maybe (Bucket ip)
lookupBucket nid = go 0
where
go i (Zero table bucket)
| testIdBit nid i = pure bucket
| otherwise = go (succ i) table
go i (One bucket table)
| testIdBit nid i = go (succ i) table
| otherwise = pure bucket
go _ (Tip _ _ bucket) = pure bucket
compatibleNodeId :: Table ip -> IO NodeId
compatibleNodeId tbl = genBucketSample prefix br
where
br = bucketRange (L.length (shape tbl) - 1) True
bs = BS.pack $ take nodeIdSize $ tablePrefix tbl ++ repeat 0
prefix = asNodeId bs
tablePrefix :: Table ip -> [Word8]
tablePrefix = map (packByte . take 8 . (++repeat False))
. chunksOf 8
. tableBits
where
packByte = foldl1' (.|.) . zipWith bitmask [7,6 .. 0]
bitmask ix True = bit ix
bitmask _ _ = 0
tableBits :: Table ip -> [Bool]
tableBits (One _ tbl) = True : tableBits tbl
tableBits (Zero tbl _) = False : tableBits tbl
tableBits (Tip _ _ _) = []
chunksOf :: Int -> [e] -> [[e]]
chunksOf i ls = map (take i) (build (splitter ls)) where
splitter :: [e] -> ([e] -> a -> a) -> a -> a
splitter [] _ n = n
splitter l c n = l `c` splitter (drop i l) c n
build :: ((a -> [a] -> [a]) -> [a] -> [a]) -> [a]
build g = g (:) []
-- | Count of closest nodes in find_node request.
type K = Int
-- | Default 'K' is equal to 'defaultBucketSize'.
defaultK :: K
defaultK = 8
class TableKey k where
toNodeId :: k -> NodeId
instance TableKey NodeId where
toNodeId = id
instance TableKey InfoHash where
toNodeId = either (error msg) id . S.decode . S.encode
where -- TODO unsafe coerse?
msg = "tableKey: impossible"
-- | Get a list of /K/ closest nodes using XOR metric. Used in
-- 'find_node' and 'get_peers' queries.
kclosest :: Eq ip => TableKey a => K -> a -> Table ip -> [NodeInfo ip]
kclosest k (toNodeId -> nid)
= L.take k . rank nodeId nid
. L.map PSQ.key . PSQ.toList . fromMaybe PSQ.empty
. fmap bktNodes
. lookupBucket nid
{-----------------------------------------------------------------------
-- Routing
-----------------------------------------------------------------------}
splitTip :: Eq ip => NodeId -> BucketCount -> BitIx -> Bucket ip -> Table ip
splitTip nid n i bucket
| testIdBit nid i = (One zeros (Tip nid (pred n) ones))
| otherwise = (Zero (Tip nid (pred n) zeros) ones)
where
(ones, zeros) = split i bucket
-- | Used in each query.
--
-- TODO: Kademlia non-empty subtrees should should split if they have less than
-- k nodes in them. Which subtrees I mean is illustrated in Fig 1. of Kademlia
-- paper. The rule requiring additional splits is in section 2.4.
modifyBucket
:: forall f ip xs. (Alternative f, Eq ip) =>
NodeId -> (Bucket ip -> f (xs, Bucket ip)) -> Table ip -> f (xs,Table ip)
modifyBucket nodeId f = go (0 :: BitIx)
where
go :: BitIx -> Table ip -> f (xs, Table ip)
go i (Zero table bucket)
| testIdBit nodeId i = second (Zero table) <$> f bucket
| otherwise = second (`Zero` bucket) <$> go (succ i) table
go i (One bucket table )
| testIdBit nodeId i = second (One bucket) <$> go (succ i) table
| otherwise = second (`One` table) <$> f bucket
go i (Tip nid n bucket)
| n == 0 = second (Tip nid n) <$> f bucket
| otherwise = second (Tip nid n) <$> f bucket
<|> go i (splitTip nid n i bucket)
-- | Triggering event for atomic table update
data Event ip = TryInsert { foreignNode :: NodeInfo ip }
| PingResult { foreignNode :: NodeInfo ip
, ponged :: Bool
}
deriving (Eq,Ord,Show)
eventId :: Event ip -> NodeId
eventId (TryInsert NodeInfo{..}) = nodeId
eventId (PingResult NodeInfo{..} _) = nodeId
-- | Actions requested by atomic table update
data CheckPing ip = CheckPing [NodeInfo ip]
deriving (Eq,Ord,Show)
-- | Atomic 'Table' update
insert :: (Alternative m, Eq ip) => Timestamp -> Event ip -> Table ip -> m ([CheckPing ip], Table ip)
insert tm event = modifyBucket (eventId event) (insertBucket tm event)
{-----------------------------------------------------------------------
-- Conversion
-----------------------------------------------------------------------}
type TableEntry ip = (NodeInfo ip, Timestamp)
tableEntry :: NodeEntry ip -> TableEntry ip
tableEntry (a :-> b) = (a, b)
-- | Non-empty list of buckets.
toBucketList :: Table ip -> [Bucket ip]
toBucketList (Tip _ _ b) = [b]
toBucketList (Zero t b) = b : toBucketList t
toBucketList (One b t) = b : toBucketList t
toList :: Eq ip => Table ip -> [[TableEntry ip]]
toList = L.map (L.map tableEntry . PSQ.toList . bktNodes) . toBucketList
|