1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
-- |
-- Copyright : (c) Sam T. 2013
-- License : MIT
-- Maintainer : pxqr.sta@gmail.com
-- Stability : experimental
-- Portability : portable
--
--
-- This module provides Bitfield datatype used to represent sets of
-- piece indexes any peer have. All associated operations should be
-- defined here as well.
--
{-# LANGUAGE BangPatterns #-}
module Network.BitTorrent.PeerWire.Bitfield
-- TODO: move to Data.Bitfield
( Bitfield(..)
-- * Construction
, empty, full
, fromByteString, toByteString
-- * Query
, findMin, findMax
, union, intersection, difference, combine
, frequencies
-- * Serialization
, getBitfield, putBitfield, bitfieldByteCount
, aligned
) where
import Control.Applicative hiding (empty)
import Data.Array.Unboxed
import Data.Bits
import Data.ByteString (ByteString)
import qualified Data.ByteString as B
import qualified Data.ByteString.Internal as B
import Data.List as L hiding (union)
import Data.Maybe
import Data.Serialize
import Data.Word
import Foreign
import Network.BitTorrent.PeerWire.Block
import Data.Torrent
newtype Bitfield = MkBitfield {
bfBits :: ByteString
-- , bfSize :: Int
} deriving (Show, Eq, Ord)
empty :: Int -> Bitfield
empty n = MkBitfield $ B.replicate (sizeInBase n 8) 0
{-# INLINE empty #-}
full :: Int -> Bitfield
full n = MkBitfield $ B.replicate (sizeInBase n 8) (complement 0)
{-# INLINE full #-}
fromByteString :: ByteString -> Bitfield
fromByteString = MkBitfield
{-# INLINE fromByteString #-}
toByteString :: Bitfield -> ByteString
toByteString = bfBits
{-# INLINE toByteString #-}
getBitfield :: Int -> Get Bitfield
getBitfield n = MkBitfield <$> getBytes n
{-# INLINE getBitfield #-}
putBitfield :: Bitfield -> Put
putBitfield = putByteString . bfBits
{-# INLINE putBitfield #-}
bitfieldByteCount :: Bitfield -> Int
bitfieldByteCount = B.length . bfBits
{-# INLINE bitfieldByteCount #-}
type Mem a = (Ptr a, Int)
aligned :: Storable a => Mem Word8 -> (Mem Word8, Mem a, Mem Word8)
aligned (ptr, len) =
let lowPtr = ptr
lowLen = midPtr `minusPtr` ptr
midOff = lowLen
(midPtr, alg) = align (castPtr ptr)
midLen = alg * div (len - midOff) alg
midLenA = midLen `div` alg
hghOff = midOff + midLen
hghPtr = ptr `advancePtr` hghOff
hghLen = len - hghOff
in
((lowPtr, lowLen), (midPtr, midLenA), (hghPtr, hghLen))
where
align :: Storable a => Ptr a -> (Ptr a, Int)
align p = tie (alignPtr p) undefined
where
tie :: Storable a => (Int -> Ptr a) -> a -> (Ptr a, Int)
tie f a = (f (alignment a), (alignment a))
{-# INLINE aligned #-}
zipWithBS :: (Word8 -> Word8 -> Word8) -> ByteString -> ByteString -> ByteString
zipWithBS f a b =
let (afptr, aoff, asize) = B.toForeignPtr a
(bfptr, boff, bsize) = B.toForeignPtr b
size = min asize bsize in
B.unsafeCreate size $ \ptr -> do
withForeignPtr afptr $ \aptr -> do
withForeignPtr bfptr $ \bptr ->
zipBytes (aptr `plusPtr` aoff) (bptr `plusPtr` boff) ptr size
where
zipBytes :: Ptr Word8 -> Ptr Word8 -> Ptr Word8 -> Int -> IO ()
zipBytes aptr bptr rptr n = go 0
where
go :: Int -> IO ()
go i | i < n = do -- TODO unfold
av <- peekByteOff aptr i
bv <- peekByteOff bptr i
pokeByteOff rptr i (f av bv)
go (succ i)
| otherwise = return ()
zipWithBF :: (Word8 -> Word8 -> Word8) -> Bitfield -> Bitfield -> Bitfield
zipWithBF f a b = MkBitfield $ zipWithBS f (bfBits a) (bfBits b)
{-# INLINE zipWithBF #-}
findSet :: ByteString -> Maybe Int
findSet b =
let (fptr, off, len) = B.toForeignPtr b in
B.inlinePerformIO $ withForeignPtr fptr $ \_ptr -> do
let ptr = _ptr `advancePtr` off
let (low, mid, hgh) = aligned (ptr, len)
let lowOff = fst low `minusPtr` ptr
let midOff = fst mid `minusPtr` ptr
let hghOff = fst hgh `minusPtr` ptr
let resL = (lowOff +) <$> goFind low
let resM = (midOff +) <$> goFind (mid :: Mem Word) -- tune size here
-- TODO: with Word8
-- bytestring findIndex works 2
-- times faster.
let resH = (hghOff +) <$> goFind hgh
let res = resL <|> resM <|> resH
-- computation of res should not escape withForeignPtr
case res of
Nothing -> return ()
Just _ -> return ()
return res
where
goFind :: (Storable a, Eq a, Num a) => Mem a -> Maybe Int
goFind (ptr, n) = go 0
where
go :: Int -> Maybe Int
go i | i < n =
let v = B.inlinePerformIO (peekElemOff ptr i) in
if v /= 0
then Just i
else go (succ i)
| otherwise = Nothing
union :: Bitfield -> Bitfield -> Bitfield
union = zipWithBF (.|.)
{-# INLINE union #-}
intersection :: Bitfield -> Bitfield -> Bitfield
intersection = zipWithBF (.&.)
{-# INLINE intersection #-}
difference :: Bitfield -> Bitfield -> Bitfield
difference = zipWithBF diffWord8
where
diffWord8 :: Word8 -> Word8 -> Word8
diffWord8 a b = a .&. (a `xor` b)
{-# INLINE diffWord8 #-}
{-# INLINE difference #-}
combine :: [Bitfield] -> Maybe Bitfield
combine [] = Nothing
combine as = return $ foldr1 intersection as
-- | Get min index of piece that the peer have.
findMin :: Bitfield -> Maybe PieceIx
findMin (MkBitfield b) = do
byteIx <- findSet b
bitIx <- findMinWord8 (B.index b byteIx)
return $ byteIx * bitSize (undefined :: Word8) + bitIx
where
-- TODO: bit tricks
findMinWord8 :: Word8 -> Maybe Int
findMinWord8 byte = L.find (testBit byte) [0..bitSize (undefined :: Word8) - 1]
{-# INLINE findMinWord8 #-}
{-# INLINE findMin #-}
findMax :: Bitfield -> Maybe PieceIx
findMax (MkBitfield b) = do
-- TODO avoid reverse
byteIx <- (pred (B.length b) -) <$> findSet (B.reverse b)
bitIx <- findMaxWord8 (B.index b byteIx)
return $ byteIx * bitSize (undefined :: Word8) + bitIx
where
-- TODO: bit tricks
findMaxWord8 :: Word8 -> Maybe Int
findMaxWord8 byte = L.find (testBit byte)
(reverse [0 :: Int ..
bitSize (undefined :: Word8) - 1])
{-# INLINE findMax #-}
frequencies :: [Bitfield] -> UArray PieceIx Int
frequencies = undefined
|