diff options
author | Alberto Ruiz <aruiz@um.es> | 2014-05-08 08:48:12 +0200 |
---|---|---|
committer | Alberto Ruiz <aruiz@um.es> | 2014-05-08 08:48:12 +0200 |
commit | 1925c123d7d8184a1d2ddc0a413e0fd2776e1083 (patch) | |
tree | fad79f909d9c3be53d68e6ebd67202650536d387 /packages/hmatrix/src/Numeric/ContainerBoot.hs | |
parent | eb3f702d065a4a967bb754977233e6eec408fd1f (diff) |
empty hmatrix-base
Diffstat (limited to 'packages/hmatrix/src/Numeric/ContainerBoot.hs')
-rw-r--r-- | packages/hmatrix/src/Numeric/ContainerBoot.hs | 611 |
1 files changed, 611 insertions, 0 deletions
diff --git a/packages/hmatrix/src/Numeric/ContainerBoot.hs b/packages/hmatrix/src/Numeric/ContainerBoot.hs new file mode 100644 index 0000000..ea4262c --- /dev/null +++ b/packages/hmatrix/src/Numeric/ContainerBoot.hs | |||
@@ -0,0 +1,611 @@ | |||
1 | {-# LANGUAGE CPP #-} | ||
2 | {-# LANGUAGE TypeFamilies #-} | ||
3 | {-# LANGUAGE FlexibleContexts #-} | ||
4 | {-# LANGUAGE FlexibleInstances #-} | ||
5 | {-# LANGUAGE MultiParamTypeClasses #-} | ||
6 | {-# LANGUAGE UndecidableInstances #-} | ||
7 | |||
8 | ----------------------------------------------------------------------------- | ||
9 | -- | | ||
10 | -- Module : Numeric.ContainerBoot | ||
11 | -- Copyright : (c) Alberto Ruiz 2010 | ||
12 | -- License : GPL-style | ||
13 | -- | ||
14 | -- Maintainer : Alberto Ruiz <aruiz@um.es> | ||
15 | -- Stability : provisional | ||
16 | -- Portability : portable | ||
17 | -- | ||
18 | -- Module to avoid cyclyc dependencies. | ||
19 | -- | ||
20 | ----------------------------------------------------------------------------- | ||
21 | |||
22 | module Numeric.ContainerBoot ( | ||
23 | -- * Basic functions | ||
24 | ident, diag, ctrans, | ||
25 | -- * Generic operations | ||
26 | Container(..), | ||
27 | -- * Matrix product and related functions | ||
28 | Product(..), udot, | ||
29 | mXm,mXv,vXm, | ||
30 | outer, kronecker, | ||
31 | -- * Element conversion | ||
32 | Convert(..), | ||
33 | Complexable(), | ||
34 | RealElement(), | ||
35 | |||
36 | RealOf, ComplexOf, SingleOf, DoubleOf, | ||
37 | |||
38 | IndexOf, | ||
39 | module Data.Complex | ||
40 | ) where | ||
41 | |||
42 | import Data.Packed | ||
43 | import Data.Packed.ST as ST | ||
44 | import Numeric.Conversion | ||
45 | import Data.Packed.Internal | ||
46 | import Numeric.GSL.Vector | ||
47 | import Data.Complex | ||
48 | import Control.Applicative((<*>)) | ||
49 | |||
50 | import Numeric.LinearAlgebra.LAPACK(multiplyR,multiplyC,multiplyF,multiplyQ) | ||
51 | |||
52 | ------------------------------------------------------------------- | ||
53 | |||
54 | type family IndexOf (c :: * -> *) | ||
55 | |||
56 | type instance IndexOf Vector = Int | ||
57 | type instance IndexOf Matrix = (Int,Int) | ||
58 | |||
59 | type family ArgOf (c :: * -> *) a | ||
60 | |||
61 | type instance ArgOf Vector a = a -> a | ||
62 | type instance ArgOf Matrix a = a -> a -> a | ||
63 | |||
64 | ------------------------------------------------------------------- | ||
65 | |||
66 | -- | Basic element-by-element functions for numeric containers | ||
67 | class (Complexable c, Fractional e, Element e) => Container c e where | ||
68 | -- | create a structure with a single element | ||
69 | -- | ||
70 | -- >>> let v = fromList [1..3::Double] | ||
71 | -- >>> v / scalar (norm2 v) | ||
72 | -- fromList [0.2672612419124244,0.5345224838248488,0.8017837257372732] | ||
73 | -- | ||
74 | scalar :: e -> c e | ||
75 | -- | complex conjugate | ||
76 | conj :: c e -> c e | ||
77 | scale :: e -> c e -> c e | ||
78 | -- | scale the element by element reciprocal of the object: | ||
79 | -- | ||
80 | -- @scaleRecip 2 (fromList [5,i]) == 2 |> [0.4 :+ 0.0,0.0 :+ (-2.0)]@ | ||
81 | scaleRecip :: e -> c e -> c e | ||
82 | addConstant :: e -> c e -> c e | ||
83 | add :: c e -> c e -> c e | ||
84 | sub :: c e -> c e -> c e | ||
85 | -- | element by element multiplication | ||
86 | mul :: c e -> c e -> c e | ||
87 | -- | element by element division | ||
88 | divide :: c e -> c e -> c e | ||
89 | equal :: c e -> c e -> Bool | ||
90 | -- | ||
91 | -- element by element inverse tangent | ||
92 | arctan2 :: c e -> c e -> c e | ||
93 | -- | ||
94 | -- | cannot implement instance Functor because of Element class constraint | ||
95 | cmap :: (Element b) => (e -> b) -> c e -> c b | ||
96 | -- | constant structure of given size | ||
97 | konst' :: e -> IndexOf c -> c e | ||
98 | -- | create a structure using a function | ||
99 | -- | ||
100 | -- Hilbert matrix of order N: | ||
101 | -- | ||
102 | -- @hilb n = build' (n,n) (\\i j -> 1/(i+j+1))@ | ||
103 | build' :: IndexOf c -> (ArgOf c e) -> c e | ||
104 | -- | indexing function | ||
105 | atIndex :: c e -> IndexOf c -> e | ||
106 | -- | index of min element | ||
107 | minIndex :: c e -> IndexOf c | ||
108 | -- | index of max element | ||
109 | maxIndex :: c e -> IndexOf c | ||
110 | -- | value of min element | ||
111 | minElement :: c e -> e | ||
112 | -- | value of max element | ||
113 | maxElement :: c e -> e | ||
114 | -- the C functions sumX/prodX are twice as fast as using foldVector | ||
115 | -- | the sum of elements (faster than using @fold@) | ||
116 | sumElements :: c e -> e | ||
117 | -- | the product of elements (faster than using @fold@) | ||
118 | prodElements :: c e -> e | ||
119 | |||
120 | -- | A more efficient implementation of @cmap (\\x -> if x>0 then 1 else 0)@ | ||
121 | -- | ||
122 | -- >>> step $ linspace 5 (-1,1::Double) | ||
123 | -- 5 |> [0.0,0.0,0.0,1.0,1.0] | ||
124 | -- | ||
125 | |||
126 | step :: RealElement e => c e -> c e | ||
127 | |||
128 | -- | Element by element version of @case compare a b of {LT -> l; EQ -> e; GT -> g}@. | ||
129 | -- | ||
130 | -- Arguments with any dimension = 1 are automatically expanded: | ||
131 | -- | ||
132 | -- >>> cond ((1><4)[1..]) ((3><1)[1..]) 0 100 ((3><4)[1..]) :: Matrix Double | ||
133 | -- (3><4) | ||
134 | -- [ 100.0, 2.0, 3.0, 4.0 | ||
135 | -- , 0.0, 100.0, 7.0, 8.0 | ||
136 | -- , 0.0, 0.0, 100.0, 12.0 ] | ||
137 | -- | ||
138 | |||
139 | cond :: RealElement e | ||
140 | => c e -- ^ a | ||
141 | -> c e -- ^ b | ||
142 | -> c e -- ^ l | ||
143 | -> c e -- ^ e | ||
144 | -> c e -- ^ g | ||
145 | -> c e -- ^ result | ||
146 | |||
147 | -- | Find index of elements which satisfy a predicate | ||
148 | -- | ||
149 | -- >>> find (>0) (ident 3 :: Matrix Double) | ||
150 | -- [(0,0),(1,1),(2,2)] | ||
151 | -- | ||
152 | |||
153 | find :: (e -> Bool) -> c e -> [IndexOf c] | ||
154 | |||
155 | -- | Create a structure from an association list | ||
156 | -- | ||
157 | -- >>> assoc 5 0 [(3,7),(1,4)] :: Vector Double | ||
158 | -- fromList [0.0,4.0,0.0,7.0,0.0] | ||
159 | -- | ||
160 | -- >>> assoc (2,3) 0 [((0,2),7),((1,0),2*i-3)] :: Matrix (Complex Double) | ||
161 | -- (2><3) | ||
162 | -- [ 0.0 :+ 0.0, 0.0 :+ 0.0, 7.0 :+ 0.0 | ||
163 | -- , (-3.0) :+ 2.0, 0.0 :+ 0.0, 0.0 :+ 0.0 ] | ||
164 | -- | ||
165 | assoc :: IndexOf c -- ^ size | ||
166 | -> e -- ^ default value | ||
167 | -> [(IndexOf c, e)] -- ^ association list | ||
168 | -> c e -- ^ result | ||
169 | |||
170 | -- | Modify a structure using an update function | ||
171 | -- | ||
172 | -- >>> accum (ident 5) (+) [((1,1),5),((0,3),3)] :: Matrix Double | ||
173 | -- (5><5) | ||
174 | -- [ 1.0, 0.0, 0.0, 3.0, 0.0 | ||
175 | -- , 0.0, 6.0, 0.0, 0.0, 0.0 | ||
176 | -- , 0.0, 0.0, 1.0, 0.0, 0.0 | ||
177 | -- , 0.0, 0.0, 0.0, 1.0, 0.0 | ||
178 | -- , 0.0, 0.0, 0.0, 0.0, 1.0 ] | ||
179 | -- | ||
180 | -- computation of histogram: | ||
181 | -- | ||
182 | -- >>> accum (konst 0 7) (+) (map (flip (,) 1) [4,5,4,1,5,2,5]) :: Vector Double | ||
183 | -- fromList [0.0,1.0,1.0,0.0,2.0,3.0,0.0] | ||
184 | -- | ||
185 | |||
186 | accum :: c e -- ^ initial structure | ||
187 | -> (e -> e -> e) -- ^ update function | ||
188 | -> [(IndexOf c, e)] -- ^ association list | ||
189 | -> c e -- ^ result | ||
190 | |||
191 | -------------------------------------------------------------------------- | ||
192 | |||
193 | instance Container Vector Float where | ||
194 | scale = vectorMapValF Scale | ||
195 | scaleRecip = vectorMapValF Recip | ||
196 | addConstant = vectorMapValF AddConstant | ||
197 | add = vectorZipF Add | ||
198 | sub = vectorZipF Sub | ||
199 | mul = vectorZipF Mul | ||
200 | divide = vectorZipF Div | ||
201 | equal u v = dim u == dim v && maxElement (vectorMapF Abs (sub u v)) == 0.0 | ||
202 | arctan2 = vectorZipF ATan2 | ||
203 | scalar x = fromList [x] | ||
204 | konst' = constantD | ||
205 | build' = buildV | ||
206 | conj = id | ||
207 | cmap = mapVector | ||
208 | atIndex = (@>) | ||
209 | minIndex = emptyErrorV "minIndex" (round . toScalarF MinIdx) | ||
210 | maxIndex = emptyErrorV "maxIndex" (round . toScalarF MaxIdx) | ||
211 | minElement = emptyErrorV "minElement" (toScalarF Min) | ||
212 | maxElement = emptyErrorV "maxElement" (toScalarF Max) | ||
213 | sumElements = sumF | ||
214 | prodElements = prodF | ||
215 | step = stepF | ||
216 | find = findV | ||
217 | assoc = assocV | ||
218 | accum = accumV | ||
219 | cond = condV condF | ||
220 | |||
221 | instance Container Vector Double where | ||
222 | scale = vectorMapValR Scale | ||
223 | scaleRecip = vectorMapValR Recip | ||
224 | addConstant = vectorMapValR AddConstant | ||
225 | add = vectorZipR Add | ||
226 | sub = vectorZipR Sub | ||
227 | mul = vectorZipR Mul | ||
228 | divide = vectorZipR Div | ||
229 | equal u v = dim u == dim v && maxElement (vectorMapR Abs (sub u v)) == 0.0 | ||
230 | arctan2 = vectorZipR ATan2 | ||
231 | scalar x = fromList [x] | ||
232 | konst' = constantD | ||
233 | build' = buildV | ||
234 | conj = id | ||
235 | cmap = mapVector | ||
236 | atIndex = (@>) | ||
237 | minIndex = emptyErrorV "minIndex" (round . toScalarR MinIdx) | ||
238 | maxIndex = emptyErrorV "maxIndex" (round . toScalarR MaxIdx) | ||
239 | minElement = emptyErrorV "minElement" (toScalarR Min) | ||
240 | maxElement = emptyErrorV "maxElement" (toScalarR Max) | ||
241 | sumElements = sumR | ||
242 | prodElements = prodR | ||
243 | step = stepD | ||
244 | find = findV | ||
245 | assoc = assocV | ||
246 | accum = accumV | ||
247 | cond = condV condD | ||
248 | |||
249 | instance Container Vector (Complex Double) where | ||
250 | scale = vectorMapValC Scale | ||
251 | scaleRecip = vectorMapValC Recip | ||
252 | addConstant = vectorMapValC AddConstant | ||
253 | add = vectorZipC Add | ||
254 | sub = vectorZipC Sub | ||
255 | mul = vectorZipC Mul | ||
256 | divide = vectorZipC Div | ||
257 | equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0 | ||
258 | arctan2 = vectorZipC ATan2 | ||
259 | scalar x = fromList [x] | ||
260 | konst' = constantD | ||
261 | build' = buildV | ||
262 | conj = conjugateC | ||
263 | cmap = mapVector | ||
264 | atIndex = (@>) | ||
265 | minIndex = emptyErrorV "minIndex" (minIndex . fst . fromComplex . (mul <*> conj)) | ||
266 | maxIndex = emptyErrorV "maxIndex" (maxIndex . fst . fromComplex . (mul <*> conj)) | ||
267 | minElement = emptyErrorV "minElement" (atIndex <*> minIndex) | ||
268 | maxElement = emptyErrorV "maxElement" (atIndex <*> maxIndex) | ||
269 | sumElements = sumC | ||
270 | prodElements = prodC | ||
271 | step = undefined -- cannot match | ||
272 | find = findV | ||
273 | assoc = assocV | ||
274 | accum = accumV | ||
275 | cond = undefined -- cannot match | ||
276 | |||
277 | instance Container Vector (Complex Float) where | ||
278 | scale = vectorMapValQ Scale | ||
279 | scaleRecip = vectorMapValQ Recip | ||
280 | addConstant = vectorMapValQ AddConstant | ||
281 | add = vectorZipQ Add | ||
282 | sub = vectorZipQ Sub | ||
283 | mul = vectorZipQ Mul | ||
284 | divide = vectorZipQ Div | ||
285 | equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0 | ||
286 | arctan2 = vectorZipQ ATan2 | ||
287 | scalar x = fromList [x] | ||
288 | konst' = constantD | ||
289 | build' = buildV | ||
290 | conj = conjugateQ | ||
291 | cmap = mapVector | ||
292 | atIndex = (@>) | ||
293 | minIndex = emptyErrorV "minIndex" (minIndex . fst . fromComplex . (mul <*> conj)) | ||
294 | maxIndex = emptyErrorV "maxIndex" (maxIndex . fst . fromComplex . (mul <*> conj)) | ||
295 | minElement = emptyErrorV "minElement" (atIndex <*> minIndex) | ||
296 | maxElement = emptyErrorV "maxElement" (atIndex <*> maxIndex) | ||
297 | sumElements = sumQ | ||
298 | prodElements = prodQ | ||
299 | step = undefined -- cannot match | ||
300 | find = findV | ||
301 | assoc = assocV | ||
302 | accum = accumV | ||
303 | cond = undefined -- cannot match | ||
304 | |||
305 | --------------------------------------------------------------- | ||
306 | |||
307 | instance (Container Vector a) => Container Matrix a where | ||
308 | scale x = liftMatrix (scale x) | ||
309 | scaleRecip x = liftMatrix (scaleRecip x) | ||
310 | addConstant x = liftMatrix (addConstant x) | ||
311 | add = liftMatrix2 add | ||
312 | sub = liftMatrix2 sub | ||
313 | mul = liftMatrix2 mul | ||
314 | divide = liftMatrix2 divide | ||
315 | equal a b = cols a == cols b && flatten a `equal` flatten b | ||
316 | arctan2 = liftMatrix2 arctan2 | ||
317 | scalar x = (1><1) [x] | ||
318 | konst' v (r,c) = matrixFromVector RowMajor r c (konst' v (r*c)) | ||
319 | build' = buildM | ||
320 | conj = liftMatrix conj | ||
321 | cmap f = liftMatrix (mapVector f) | ||
322 | atIndex = (@@>) | ||
323 | minIndex = emptyErrorM "minIndex of Matrix" $ | ||
324 | \m -> divMod (minIndex $ flatten m) (cols m) | ||
325 | maxIndex = emptyErrorM "maxIndex of Matrix" $ | ||
326 | \m -> divMod (maxIndex $ flatten m) (cols m) | ||
327 | minElement = emptyErrorM "minElement of Matrix" (atIndex <*> minIndex) | ||
328 | maxElement = emptyErrorM "maxElement of Matrix" (atIndex <*> maxIndex) | ||
329 | sumElements = sumElements . flatten | ||
330 | prodElements = prodElements . flatten | ||
331 | step = liftMatrix step | ||
332 | find = findM | ||
333 | assoc = assocM | ||
334 | accum = accumM | ||
335 | cond = condM | ||
336 | |||
337 | |||
338 | emptyErrorV msg f v = | ||
339 | if dim v > 0 | ||
340 | then f v | ||
341 | else error $ msg ++ " of Vector with dim = 0" | ||
342 | |||
343 | emptyErrorM msg f m = | ||
344 | if rows m > 0 && cols m > 0 | ||
345 | then f m | ||
346 | else error $ msg++" "++shSize m | ||
347 | |||
348 | ---------------------------------------------------- | ||
349 | |||
350 | -- | Matrix product and related functions | ||
351 | class (Num e, Element e) => Product e where | ||
352 | -- | matrix product | ||
353 | multiply :: Matrix e -> Matrix e -> Matrix e | ||
354 | -- | sum of absolute value of elements (differs in complex case from @norm1@) | ||
355 | absSum :: Vector e -> RealOf e | ||
356 | -- | sum of absolute value of elements | ||
357 | norm1 :: Vector e -> RealOf e | ||
358 | -- | euclidean norm | ||
359 | norm2 :: Vector e -> RealOf e | ||
360 | -- | element of maximum magnitude | ||
361 | normInf :: Vector e -> RealOf e | ||
362 | |||
363 | instance Product Float where | ||
364 | norm2 = emptyVal (toScalarF Norm2) | ||
365 | absSum = emptyVal (toScalarF AbsSum) | ||
366 | norm1 = emptyVal (toScalarF AbsSum) | ||
367 | normInf = emptyVal (maxElement . vectorMapF Abs) | ||
368 | multiply = emptyMul multiplyF | ||
369 | |||
370 | instance Product Double where | ||
371 | norm2 = emptyVal (toScalarR Norm2) | ||
372 | absSum = emptyVal (toScalarR AbsSum) | ||
373 | norm1 = emptyVal (toScalarR AbsSum) | ||
374 | normInf = emptyVal (maxElement . vectorMapR Abs) | ||
375 | multiply = emptyMul multiplyR | ||
376 | |||
377 | instance Product (Complex Float) where | ||
378 | norm2 = emptyVal (toScalarQ Norm2) | ||
379 | absSum = emptyVal (toScalarQ AbsSum) | ||
380 | norm1 = emptyVal (sumElements . fst . fromComplex . vectorMapQ Abs) | ||
381 | normInf = emptyVal (maxElement . fst . fromComplex . vectorMapQ Abs) | ||
382 | multiply = emptyMul multiplyQ | ||
383 | |||
384 | instance Product (Complex Double) where | ||
385 | norm2 = emptyVal (toScalarC Norm2) | ||
386 | absSum = emptyVal (toScalarC AbsSum) | ||
387 | norm1 = emptyVal (sumElements . fst . fromComplex . vectorMapC Abs) | ||
388 | normInf = emptyVal (maxElement . fst . fromComplex . vectorMapC Abs) | ||
389 | multiply = emptyMul multiplyC | ||
390 | |||
391 | emptyMul m a b | ||
392 | | x1 == 0 && x2 == 0 || r == 0 || c == 0 = konst' 0 (r,c) | ||
393 | | otherwise = m a b | ||
394 | where | ||
395 | r = rows a | ||
396 | x1 = cols a | ||
397 | x2 = rows b | ||
398 | c = cols b | ||
399 | |||
400 | emptyVal f v = | ||
401 | if dim v > 0 | ||
402 | then f v | ||
403 | else 0 | ||
404 | |||
405 | -- FIXME remove unused C wrappers | ||
406 | -- | (unconjugated) dot product | ||
407 | udot :: Product e => Vector e -> Vector e -> e | ||
408 | udot u v | ||
409 | | dim u == dim v = val (asRow u `multiply` asColumn v) | ||
410 | | otherwise = error $ "different dimensions "++show (dim u)++" and "++show (dim v)++" in dot product" | ||
411 | where | ||
412 | val m | dim u > 0 = m@@>(0,0) | ||
413 | | otherwise = 0 | ||
414 | |||
415 | ---------------------------------------------------------- | ||
416 | |||
417 | -- synonym for matrix product | ||
418 | mXm :: Product t => Matrix t -> Matrix t -> Matrix t | ||
419 | mXm = multiply | ||
420 | |||
421 | -- matrix - vector product | ||
422 | mXv :: Product t => Matrix t -> Vector t -> Vector t | ||
423 | mXv m v = flatten $ m `mXm` (asColumn v) | ||
424 | |||
425 | -- vector - matrix product | ||
426 | vXm :: Product t => Vector t -> Matrix t -> Vector t | ||
427 | vXm v m = flatten $ (asRow v) `mXm` m | ||
428 | |||
429 | {- | Outer product of two vectors. | ||
430 | |||
431 | >>> fromList [1,2,3] `outer` fromList [5,2,3] | ||
432 | (3><3) | ||
433 | [ 5.0, 2.0, 3.0 | ||
434 | , 10.0, 4.0, 6.0 | ||
435 | , 15.0, 6.0, 9.0 ] | ||
436 | |||
437 | -} | ||
438 | outer :: (Product t) => Vector t -> Vector t -> Matrix t | ||
439 | outer u v = asColumn u `multiply` asRow v | ||
440 | |||
441 | {- | Kronecker product of two matrices. | ||
442 | |||
443 | @m1=(2><3) | ||
444 | [ 1.0, 2.0, 0.0 | ||
445 | , 0.0, -1.0, 3.0 ] | ||
446 | m2=(4><3) | ||
447 | [ 1.0, 2.0, 3.0 | ||
448 | , 4.0, 5.0, 6.0 | ||
449 | , 7.0, 8.0, 9.0 | ||
450 | , 10.0, 11.0, 12.0 ]@ | ||
451 | |||
452 | >>> kronecker m1 m2 | ||
453 | (8><9) | ||
454 | [ 1.0, 2.0, 3.0, 2.0, 4.0, 6.0, 0.0, 0.0, 0.0 | ||
455 | , 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 0.0, 0.0, 0.0 | ||
456 | , 7.0, 8.0, 9.0, 14.0, 16.0, 18.0, 0.0, 0.0, 0.0 | ||
457 | , 10.0, 11.0, 12.0, 20.0, 22.0, 24.0, 0.0, 0.0, 0.0 | ||
458 | , 0.0, 0.0, 0.0, -1.0, -2.0, -3.0, 3.0, 6.0, 9.0 | ||
459 | , 0.0, 0.0, 0.0, -4.0, -5.0, -6.0, 12.0, 15.0, 18.0 | ||
460 | , 0.0, 0.0, 0.0, -7.0, -8.0, -9.0, 21.0, 24.0, 27.0 | ||
461 | , 0.0, 0.0, 0.0, -10.0, -11.0, -12.0, 30.0, 33.0, 36.0 ] | ||
462 | |||
463 | -} | ||
464 | kronecker :: (Product t) => Matrix t -> Matrix t -> Matrix t | ||
465 | kronecker a b = fromBlocks | ||
466 | . splitEvery (cols a) | ||
467 | . map (reshape (cols b)) | ||
468 | . toRows | ||
469 | $ flatten a `outer` flatten b | ||
470 | |||
471 | ------------------------------------------------------------------- | ||
472 | |||
473 | |||
474 | class Convert t where | ||
475 | real :: Container c t => c (RealOf t) -> c t | ||
476 | complex :: Container c t => c t -> c (ComplexOf t) | ||
477 | single :: Container c t => c t -> c (SingleOf t) | ||
478 | double :: Container c t => c t -> c (DoubleOf t) | ||
479 | toComplex :: (Container c t, RealElement t) => (c t, c t) -> c (Complex t) | ||
480 | fromComplex :: (Container c t, RealElement t) => c (Complex t) -> (c t, c t) | ||
481 | |||
482 | |||
483 | instance Convert Double where | ||
484 | real = id | ||
485 | complex = comp' | ||
486 | single = single' | ||
487 | double = id | ||
488 | toComplex = toComplex' | ||
489 | fromComplex = fromComplex' | ||
490 | |||
491 | instance Convert Float where | ||
492 | real = id | ||
493 | complex = comp' | ||
494 | single = id | ||
495 | double = double' | ||
496 | toComplex = toComplex' | ||
497 | fromComplex = fromComplex' | ||
498 | |||
499 | instance Convert (Complex Double) where | ||
500 | real = comp' | ||
501 | complex = id | ||
502 | single = single' | ||
503 | double = id | ||
504 | toComplex = toComplex' | ||
505 | fromComplex = fromComplex' | ||
506 | |||
507 | instance Convert (Complex Float) where | ||
508 | real = comp' | ||
509 | complex = id | ||
510 | single = id | ||
511 | double = double' | ||
512 | toComplex = toComplex' | ||
513 | fromComplex = fromComplex' | ||
514 | |||
515 | ------------------------------------------------------------------- | ||
516 | |||
517 | type family RealOf x | ||
518 | |||
519 | type instance RealOf Double = Double | ||
520 | type instance RealOf (Complex Double) = Double | ||
521 | |||
522 | type instance RealOf Float = Float | ||
523 | type instance RealOf (Complex Float) = Float | ||
524 | |||
525 | type family ComplexOf x | ||
526 | |||
527 | type instance ComplexOf Double = Complex Double | ||
528 | type instance ComplexOf (Complex Double) = Complex Double | ||
529 | |||
530 | type instance ComplexOf Float = Complex Float | ||
531 | type instance ComplexOf (Complex Float) = Complex Float | ||
532 | |||
533 | type family SingleOf x | ||
534 | |||
535 | type instance SingleOf Double = Float | ||
536 | type instance SingleOf Float = Float | ||
537 | |||
538 | type instance SingleOf (Complex a) = Complex (SingleOf a) | ||
539 | |||
540 | type family DoubleOf x | ||
541 | |||
542 | type instance DoubleOf Double = Double | ||
543 | type instance DoubleOf Float = Double | ||
544 | |||
545 | type instance DoubleOf (Complex a) = Complex (DoubleOf a) | ||
546 | |||
547 | type family ElementOf c | ||
548 | |||
549 | type instance ElementOf (Vector a) = a | ||
550 | type instance ElementOf (Matrix a) = a | ||
551 | |||
552 | ------------------------------------------------------------ | ||
553 | |||
554 | buildM (rc,cc) f = fromLists [ [f r c | c <- cs] | r <- rs ] | ||
555 | where rs = map fromIntegral [0 .. (rc-1)] | ||
556 | cs = map fromIntegral [0 .. (cc-1)] | ||
557 | |||
558 | buildV n f = fromList [f k | k <- ks] | ||
559 | where ks = map fromIntegral [0 .. (n-1)] | ||
560 | |||
561 | -------------------------------------------------------- | ||
562 | -- | conjugate transpose | ||
563 | ctrans :: (Container Vector e, Element e) => Matrix e -> Matrix e | ||
564 | ctrans = liftMatrix conj . trans | ||
565 | |||
566 | -- | Creates a square matrix with a given diagonal. | ||
567 | diag :: (Num a, Element a) => Vector a -> Matrix a | ||
568 | diag v = diagRect 0 v n n where n = dim v | ||
569 | |||
570 | -- | creates the identity matrix of given dimension | ||
571 | ident :: (Num a, Element a) => Int -> Matrix a | ||
572 | ident n = diag (constantD 1 n) | ||
573 | |||
574 | -------------------------------------------------------- | ||
575 | |||
576 | findV p x = foldVectorWithIndex g [] x where | ||
577 | g k z l = if p z then k:l else l | ||
578 | |||
579 | findM p x = map ((`divMod` cols x)) $ findV p (flatten x) | ||
580 | |||
581 | assocV n z xs = ST.runSTVector $ do | ||
582 | v <- ST.newVector z n | ||
583 | mapM_ (\(k,x) -> ST.writeVector v k x) xs | ||
584 | return v | ||
585 | |||
586 | assocM (r,c) z xs = ST.runSTMatrix $ do | ||
587 | m <- ST.newMatrix z r c | ||
588 | mapM_ (\((i,j),x) -> ST.writeMatrix m i j x) xs | ||
589 | return m | ||
590 | |||
591 | accumV v0 f xs = ST.runSTVector $ do | ||
592 | v <- ST.thawVector v0 | ||
593 | mapM_ (\(k,x) -> ST.modifyVector v k (f x)) xs | ||
594 | return v | ||
595 | |||
596 | accumM m0 f xs = ST.runSTMatrix $ do | ||
597 | m <- ST.thawMatrix m0 | ||
598 | mapM_ (\((i,j),x) -> ST.modifyMatrix m i j (f x)) xs | ||
599 | return m | ||
600 | |||
601 | ---------------------------------------------------------------------- | ||
602 | |||
603 | condM a b l e t = matrixFromVector RowMajor (rows a'') (cols a'') $ cond a' b' l' e' t' | ||
604 | where | ||
605 | args@(a'':_) = conformMs [a,b,l,e,t] | ||
606 | [a', b', l', e', t'] = map flatten args | ||
607 | |||
608 | condV f a b l e t = f a' b' l' e' t' | ||
609 | where | ||
610 | [a', b', l', e', t'] = conformVs [a,b,l,e,t] | ||
611 | |||