summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--packages/base/src/Internal/Algorithms.hs138
-rw-r--r--packages/base/src/Internal/CG.hs20
-rw-r--r--packages/base/src/Internal/Modular.hs10
-rw-r--r--packages/base/src/Internal/Numeric.hs50
-rw-r--r--packages/base/src/Internal/Util.hs14
-rw-r--r--packages/base/src/Numeric/LinearAlgebra.hs47
-rw-r--r--packages/base/src/Numeric/LinearAlgebra/HMatrix.hs3
-rw-r--r--packages/base/src/Numeric/LinearAlgebra/Static.hs12
-rw-r--r--packages/tests/src/Numeric/LinearAlgebra/Tests.hs48
-rw-r--r--packages/tests/src/Numeric/LinearAlgebra/Tests/Instances.hs18
-rw-r--r--packages/tests/src/Numeric/LinearAlgebra/Tests/Properties.hs12
11 files changed, 239 insertions, 133 deletions
diff --git a/packages/base/src/Internal/Algorithms.hs b/packages/base/src/Internal/Algorithms.hs
index 3d25491..d2f17f4 100644
--- a/packages/base/src/Internal/Algorithms.hs
+++ b/packages/base/src/Internal/Algorithms.hs
@@ -4,6 +4,12 @@
4{-# LANGUAGE UndecidableInstances #-} 4{-# LANGUAGE UndecidableInstances #-}
5{-# LANGUAGE TypeFamilies #-} 5{-# LANGUAGE TypeFamilies #-}
6 6
7{-# LANGUAGE FlexibleContexts, FlexibleInstances #-}
8{-# LANGUAGE CPP #-}
9{-# LANGUAGE MultiParamTypeClasses #-}
10{-# LANGUAGE UndecidableInstances #-}
11{-# LANGUAGE TypeFamilies #-}
12
7----------------------------------------------------------------------------- 13-----------------------------------------------------------------------------
8{- | 14{- |
9Module : Internal.Algorithms 15Module : Internal.Algorithms
@@ -32,6 +38,7 @@ import Data.List(foldl1')
32import qualified Data.Array as A 38import qualified Data.Array as A
33import Internal.ST 39import Internal.ST
34import Internal.Vectorized(range) 40import Internal.Vectorized(range)
41import Control.DeepSeq
35 42
36{- | Generic linear algebra functions for double precision real and complex matrices. 43{- | Generic linear algebra functions for double precision real and complex matrices.
37 44
@@ -43,6 +50,10 @@ class (Numeric t,
43 Normed Matrix t, 50 Normed Matrix t,
44 Normed Vector t, 51 Normed Vector t,
45 Floating t, 52 Floating t,
53 Linear t Vector,
54 Linear t Matrix,
55 Additive (Vector t),
56 Additive (Matrix t),
46 RealOf t ~ Double) => Field t where 57 RealOf t ~ Double) => Field t where
47 svd' :: Matrix t -> (Matrix t, Vector Double, Matrix t) 58 svd' :: Matrix t -> (Matrix t, Vector Double, Matrix t)
48 thinSVD' :: Matrix t -> (Matrix t, Vector Double, Matrix t) 59 thinSVD' :: Matrix t -> (Matrix t, Vector Double, Matrix t)
@@ -306,25 +317,38 @@ leftSV m | vertical m = let (u,s,_) = svd m in (u,s)
306 317
307-------------------------------------------------------------- 318--------------------------------------------------------------
308 319
320-- | LU decomposition of a matrix in a compact format.
321data LU t = LU (Matrix t) [Int] deriving Show
322
323instance (NFData t, Numeric t) => NFData (LU t)
324 where
325 rnf (LU m _) = rnf m
326
309-- | Obtains the LU decomposition of a matrix in a compact data structure suitable for 'luSolve'. 327-- | Obtains the LU decomposition of a matrix in a compact data structure suitable for 'luSolve'.
310luPacked :: Field t => Matrix t -> (Matrix t, [Int]) 328luPacked :: Field t => Matrix t -> LU t
311luPacked = {-# SCC "luPacked" #-} luPacked' 329luPacked x = {-# SCC "luPacked" #-} LU m p
330 where
331 (m,p) = luPacked' x
312 332
313-- | Solution of a linear system (for several right hand sides) from the precomputed LU factorization obtained by 'luPacked'. 333-- | Solution of a linear system (for several right hand sides) from the precomputed LU factorization obtained by 'luPacked'.
314luSolve :: Field t => (Matrix t, [Int]) -> Matrix t -> Matrix t 334luSolve :: Field t => LU t -> Matrix t -> Matrix t
315luSolve = {-# SCC "luSolve" #-} luSolve' 335luSolve (LU m p) = {-# SCC "luSolve" #-} luSolve' (m,p)
316 336
317-- | Solve a linear system (for square coefficient matrix and several right-hand sides) using the LU decomposition. For underconstrained or overconstrained systems use 'linearSolveLS' or 'linearSolveSVD'. 337-- | Solve a linear system (for square coefficient matrix and several right-hand sides) using the LU decomposition. For underconstrained or overconstrained systems use 'linearSolveLS' or 'linearSolveSVD'.
318-- It is similar to 'luSolve' . 'luPacked', but @linearSolve@ raises an error if called on a singular system. 338-- It is similar to 'luSolve' . 'luPacked', but @linearSolve@ raises an error if called on a singular system.
319linearSolve :: Field t => Matrix t -> Matrix t -> Matrix t 339linearSolve :: Field t => Matrix t -> Matrix t -> Matrix t
320linearSolve = {-# SCC "linearSolve" #-} linearSolve' 340linearSolve = {-# SCC "linearSolve" #-} linearSolve'
321 341
322-- | Solve a linear system (for square coefficient matrix and several right-hand sides) using the LU decomposition, returning Nothing for a singular system. For underconstrained or overconstrained systems use 'linearSolveLS' or 'linearSolveSVD'. 342-- | Solve a linear system (for square coefficient matrix and several right-hand sides) using the LU decomposition, returning Nothing for a singular system. For underconstrained or overconstrained systems use 'linearSolveLS' or 'linearSolveSVD'.
323mbLinearSolve :: Field t => Matrix t -> Matrix t -> Maybe (Matrix t) 343mbLinearSolve :: Field t => Matrix t -> Matrix t -> Maybe (Matrix t)
324mbLinearSolve = {-# SCC "linearSolve" #-} mbLinearSolve' 344mbLinearSolve = {-# SCC "linearSolve" #-} mbLinearSolve'
325 345
326-- | Solve a symmetric or Hermitian positive definite linear system using a precomputed Cholesky decomposition obtained by 'chol'. 346-- | Solve a symmetric or Hermitian positive definite linear system using a precomputed Cholesky decomposition obtained by 'chol'.
327cholSolve :: Field t => Matrix t -> Matrix t -> Matrix t 347cholSolve
348 :: Field t
349 => Matrix t -- ^ Cholesky decomposition of the coefficient matrix
350 -> Matrix t -- ^ right hand sides
351 -> Matrix t -- ^ solution
328cholSolve = {-# SCC "cholSolve" #-} cholSolve' 352cholSolve = {-# SCC "cholSolve" #-} cholSolve'
329 353
330-- | Minimum norm solution of a general linear least squares problem Ax=B using the SVD. Admits rank-deficient systems but it is slower than 'linearSolveLS'. The effective rank of A is determined by treating as zero those singular valures which are less than 'eps' times the largest singular value. 354-- | Minimum norm solution of a general linear least squares problem Ax=B using the SVD. Admits rank-deficient systems but it is slower than 'linearSolveLS'. The effective rank of A is determined by treating as zero those singular valures which are less than 'eps' times the largest singular value.
@@ -338,20 +362,28 @@ linearSolveLS = {-# SCC "linearSolveLS" #-} linearSolveLS'
338 362
339-------------------------------------------------------------------------------- 363--------------------------------------------------------------------------------
340 364
365-- | LDL decomposition of a complex Hermitian or real symmetric matrix in a compact format.
366data LDL t = LDL (Matrix t) [Int] deriving Show
367
368instance (NFData t, Numeric t) => NFData (LDL t)
369 where
370 rnf (LDL m _) = rnf m
371
341-- | Similar to 'ldlPacked', without checking that the input matrix is hermitian or symmetric. It works with the lower triangular part. 372-- | Similar to 'ldlPacked', without checking that the input matrix is hermitian or symmetric. It works with the lower triangular part.
342ldlPackedSH :: Field t => Matrix t -> (Matrix t, [Int]) 373ldlPackedSH :: Field t => Matrix t -> LDL t
343ldlPackedSH = {-# SCC "ldlPacked" #-} ldlPacked' 374ldlPackedSH x = {-# SCC "ldlPacked" #-} LDL m p
375 where
376 (m,p) = ldlPacked' x
344 377
345-- | Obtains the LDL decomposition of a matrix in a compact data structure suitable for 'ldlSolve'. 378-- | Obtains the LDL decomposition of a matrix in a compact data structure suitable for 'ldlSolve'.
346ldlPacked :: Field t => Matrix t -> (Matrix t, [Int]) 379ldlPacked :: Field t => Her t -> LDL t
347ldlPacked m 380ldlPacked (Her m) = ldlPackedSH m
348 | exactHermitian m = {-# SCC "ldlPacked" #-} ldlPackedSH m
349 | otherwise = error "ldlPacked requires complex Hermitian or real symmetrix matrix"
350
351 381
352-- | Solution of a linear system (for several right hand sides) from the precomputed LDL factorization obtained by 'ldlPacked'. 382-- | Solution of a linear system (for several right hand sides) from a precomputed LDL factorization obtained by 'ldlPacked'.
353ldlSolve :: Field t => (Matrix t, [Int]) -> Matrix t -> Matrix t 383--
354ldlSolve = {-# SCC "ldlSolve" #-} ldlSolve' 384-- Note: this can be slower than the general solver based on the LU decomposition.
385ldlSolve :: Field t => LDL t -> Matrix t -> Matrix t
386ldlSolve (LDL m p) = {-# SCC "ldlSolve" #-} ldlSolve' (m,p)
355 387
356-------------------------------------------------------------- 388--------------------------------------------------------------
357 389
@@ -429,14 +461,12 @@ fromList [11.344814282762075,0.17091518882717918,-0.5157294715892575]
4293.000 5.000 6.000 4613.000 5.000 6.000
430 462
431-} 463-}
432eigSH :: Field t => Matrix t -> (Vector Double, Matrix t) 464eigSH :: Field t => Her t -> (Vector Double, Matrix t)
433eigSH m | exactHermitian m = eigSH' m 465eigSH (Her m) = eigSH' m
434 | otherwise = error "eigSH requires complex hermitian or real symmetric matrix"
435 466
436-- | Eigenvalues (in descending order) of a complex hermitian or real symmetric matrix. 467-- | Eigenvalues (in descending order) of a complex hermitian or real symmetric matrix.
437eigenvaluesSH :: Field t => Matrix t -> Vector Double 468eigenvaluesSH :: Field t => Her t -> Vector Double
438eigenvaluesSH m | exactHermitian m = eigenvaluesSH' m 469eigenvaluesSH (Her m) = eigenvaluesSH' m
439 | otherwise = error "eigenvaluesSH requires complex hermitian or real symmetric matrix"
440 470
441-------------------------------------------------------------- 471--------------------------------------------------------------
442 472
@@ -490,14 +520,18 @@ mbCholSH = {-# SCC "mbCholSH" #-} mbCholSH'
490 520
491-- | Similar to 'chol', without checking that the input matrix is hermitian or symmetric. It works with the upper triangular part. 521-- | Similar to 'chol', without checking that the input matrix is hermitian or symmetric. It works with the upper triangular part.
492cholSH :: Field t => Matrix t -> Matrix t 522cholSH :: Field t => Matrix t -> Matrix t
493cholSH = {-# SCC "cholSH" #-} cholSH' 523cholSH = cholSH'
494 524
495-- | Cholesky factorization of a positive definite hermitian or symmetric matrix. 525-- | Cholesky factorization of a positive definite hermitian or symmetric matrix.
496-- 526--
497-- If @c = chol m@ then @c@ is upper triangular and @m == tr c \<> c@. 527-- If @c = chol m@ then @c@ is upper triangular and @m == tr c \<> c@.
498chol :: Field t => Matrix t -> Matrix t 528chol :: Field t => Her t -> Matrix t
499chol m | exactHermitian m = cholSH m 529chol (Her m) = {-# SCC "chol" #-} cholSH' m
500 | otherwise = error "chol requires positive definite complex hermitian or real symmetric matrix" 530
531-- | Similar to 'chol', but instead of an error (e.g., caused by a matrix not positive definite) it returns 'Nothing'.
532mbChol :: Field t => Her t -> Maybe (Matrix t)
533mbChol (Her m) = {-# SCC "mbChol" #-} mbCholSH' m
534
501 535
502 536
503-- | Joint computation of inverse and logarithm of determinant of a square matrix. 537-- | Joint computation of inverse and logarithm of determinant of a square matrix.
@@ -507,7 +541,7 @@ invlndet :: Field t
507invlndet m | square m = (im,(ladm,sdm)) 541invlndet m | square m = (im,(ladm,sdm))
508 | otherwise = error $ "invlndet of nonsquare "++ shSize m ++ " matrix" 542 | otherwise = error $ "invlndet of nonsquare "++ shSize m ++ " matrix"
509 where 543 where
510 lp@(lup,perm) = luPacked m 544 lp@(LU lup perm) = luPacked m
511 s = signlp (rows m) perm 545 s = signlp (rows m) perm
512 dg = toList $ takeDiag $ lup 546 dg = toList $ takeDiag $ lup
513 ladm = sum $ map (log.abs) dg 547 ladm = sum $ map (log.abs) dg
@@ -519,8 +553,9 @@ invlndet m | square m = (im,(ladm,sdm))
519det :: Field t => Matrix t -> t 553det :: Field t => Matrix t -> t
520det m | square m = {-# SCC "det" #-} s * (product $ toList $ takeDiag $ lup) 554det m | square m = {-# SCC "det" #-} s * (product $ toList $ takeDiag $ lup)
521 | otherwise = error $ "det of nonsquare "++ shSize m ++ " matrix" 555 | otherwise = error $ "det of nonsquare "++ shSize m ++ " matrix"
522 where (lup,perm) = luPacked m 556 where
523 s = signlp (rows m) perm 557 LU lup perm = luPacked m
558 s = signlp (rows m) perm
524 559
525-- | Explicit LU factorization of a general matrix. 560-- | Explicit LU factorization of a general matrix.
526-- 561--
@@ -720,7 +755,7 @@ diagonalize m = if rank v == n
720 else Nothing 755 else Nothing
721 where n = rows m 756 where n = rows m
722 (l,v) = if exactHermitian m 757 (l,v) = if exactHermitian m
723 then let (l',v') = eigSH m in (real l', v') 758 then let (l',v') = eigSH (trustSym m) in (real l', v')
724 else eig m 759 else eig m
725 760
726-- | Generic matrix functions for diagonalizable matrices. For instance: 761-- | Generic matrix functions for diagonalizable matrices. For instance:
@@ -835,8 +870,9 @@ fixPerm' s = res $ mutable f s0
835triang r c h v = (r><c) [el s t | s<-[0..r-1], t<-[0..c-1]] 870triang r c h v = (r><c) [el s t | s<-[0..r-1], t<-[0..c-1]]
836 where el p q = if q-p>=h then v else 1 - v 871 where el p q = if q-p>=h then v else 1 - v
837 872
838luFact (l_u,perm) | r <= c = (l ,u ,p, s) 873luFact (LU l_u perm)
839 | otherwise = (l',u',p, s) 874 | r <= c = (l ,u ,p, s)
875 | otherwise = (l',u',p, s)
840 where 876 where
841 r = rows l_u 877 r = rows l_u
842 c = cols l_u 878 c = cols l_u
@@ -929,7 +965,13 @@ relativeError norm a b = r
929---------------------------------------------------------------------- 965----------------------------------------------------------------------
930 966
931-- | Generalized symmetric positive definite eigensystem Av = lBv, 967-- | Generalized symmetric positive definite eigensystem Av = lBv,
932-- for A and B symmetric, B positive definite (conditions not checked). 968-- for A and B symmetric, B positive definite.
969geigSH :: Field t
970 => Her t -- ^ A
971 -> Her t -- ^ B
972 -> (Vector Double, Matrix t)
973geigSH (Her a) (Her b) = geigSH' a b
974
933geigSH' :: Field t 975geigSH' :: Field t
934 => Matrix t -- ^ A 976 => Matrix t -- ^ A
935 -> Matrix t -- ^ B 977 -> Matrix t -- ^ B
@@ -943,3 +985,33 @@ geigSH' a b = (l,v')
943 v' = iu <> v 985 v' = iu <> v
944 (<>) = mXm 986 (<>) = mXm
945 987
988--------------------------------------------------------------------------------
989
990-- | A matrix that, by construction, it is known to be complex Hermitian or real symmetric.
991--
992-- It can be created using 'sym', 'xTx', or 'trustSym', and the matrix can be extracted using 'her'.
993data Her t = Her (Matrix t) deriving Show
994
995-- | Extract the general matrix from a 'Her' structure, forgetting its symmetric or Hermitian property.
996her :: Her t -> Matrix t
997her (Her x) = x
998
999-- | Compute the complex Hermitian or real symmetric part of a square matrix (@(x + tr x)/2@).
1000sym :: Field t => Matrix t -> Her t
1001sym x = Her (scale 0.5 (tr x `add` x))
1002
1003-- | Compute the contraction @tr x <> x@ of a general matrix.
1004xTx :: Numeric t => Matrix t -> Her t
1005xTx x = Her (tr x `mXm` x)
1006
1007instance Field t => Linear t Her where
1008 scale x (Her m) = Her (scale x m)
1009
1010instance Field t => Additive (Her t) where
1011 add (Her a) (Her b) = Her (a `add` b)
1012
1013-- | At your own risk, declare that a matrix is complex Hermitian or real symmetric
1014-- for usage in 'chol', 'eigSH', etc. Only a triangular part of the matrix will be used.
1015trustSym :: Matrix t -> Her t
1016trustSym x = (Her x)
1017
diff --git a/packages/base/src/Internal/CG.hs b/packages/base/src/Internal/CG.hs
index f0142cd..cc10ad8 100644
--- a/packages/base/src/Internal/CG.hs
+++ b/packages/base/src/Internal/CG.hs
@@ -32,11 +32,11 @@ v /// b = debugMat b 2 asRow v
32type V = Vector R 32type V = Vector R
33 33
34data CGState = CGState 34data CGState = CGState
35 { cgp :: V -- ^ conjugate gradient 35 { cgp :: Vector R -- ^ conjugate gradient
36 , cgr :: V -- ^ residual 36 , cgr :: Vector R -- ^ residual
37 , cgr2 :: R -- ^ squared norm of residual 37 , cgr2 :: R -- ^ squared norm of residual
38 , cgx :: V -- ^ current solution 38 , cgx :: Vector R -- ^ current solution
39 , cgdx :: R -- ^ normalized size of correction 39 , cgdx :: R -- ^ normalized size of correction
40 } 40 }
41 41
42cg :: Bool -> (V -> V) -> (V -> V) -> CGState -> CGState 42cg :: Bool -> (V -> V) -> (V -> V) -> CGState -> CGState
@@ -89,23 +89,25 @@ takeUntil q xs = a++ take 1 b
89 where 89 where
90 (a,b) = break q xs 90 (a,b) = break q xs
91 91
92-- | Solve a sparse linear system using the conjugate gradient method with default parameters.
92cgSolve 93cgSolve
93 :: Bool -- ^ is symmetric 94 :: Bool -- ^ is symmetric
94 -> GMatrix -- ^ coefficient matrix 95 -> GMatrix -- ^ coefficient matrix
95 -> Vector Double -- ^ right-hand side 96 -> Vector R -- ^ right-hand side
96 -> Vector Double -- ^ solution 97 -> Vector R -- ^ solution
97cgSolve sym a b = cgx $ last $ cgSolve' sym 1E-4 1E-3 n a b 0 98cgSolve sym a b = cgx $ last $ cgSolve' sym 1E-4 1E-3 n a b 0
98 where 99 where
99 n = max 10 (round $ sqrt (fromIntegral (dim b) :: Double)) 100 n = max 10 (round $ sqrt (fromIntegral (dim b) :: Double))
100 101
102-- | Solve a sparse linear system using the conjugate gradient method with default parameters.
101cgSolve' 103cgSolve'
102 :: Bool -- ^ symmetric 104 :: Bool -- ^ symmetric
103 -> R -- ^ relative tolerance for the residual (e.g. 1E-4) 105 -> R -- ^ relative tolerance for the residual (e.g. 1E-4)
104 -> R -- ^ relative tolerance for δx (e.g. 1E-3) 106 -> R -- ^ relative tolerance for δx (e.g. 1E-3)
105 -> Int -- ^ maximum number of iterations 107 -> Int -- ^ maximum number of iterations
106 -> GMatrix -- ^ coefficient matrix 108 -> GMatrix -- ^ coefficient matrix
107 -> V -- ^ initial solution 109 -> Vector R -- ^ initial solution
108 -> V -- ^ right-hand side 110 -> Vector R -- ^ right-hand side
109 -> [CGState] -- ^ solution 111 -> [CGState] -- ^ solution
110cgSolve' sym er es n a b x = take n $ conjugrad sym a b x er es 112cgSolve' sym er es n a b x = take n $ conjugrad sym a b x er es
111 113
diff --git a/packages/base/src/Internal/Modular.hs b/packages/base/src/Internal/Modular.hs
index 64ed2bb..a3421a8 100644
--- a/packages/base/src/Internal/Modular.hs
+++ b/packages/base/src/Internal/Modular.hs
@@ -33,7 +33,7 @@ import Internal.Element
33import Internal.Container 33import Internal.Container
34import Internal.Vectorized (prodI,sumI,prodL,sumL) 34import Internal.Vectorized (prodI,sumI,prodL,sumL)
35import Internal.LAPACK (multiplyI, multiplyL) 35import Internal.LAPACK (multiplyI, multiplyL)
36import Internal.Algorithms(luFact) 36import Internal.Algorithms(luFact,LU(..))
37import Internal.Util(Normed(..),Indexable(..), 37import Internal.Util(Normed(..),Indexable(..),
38 gaussElim, gaussElim_1, gaussElim_2, 38 gaussElim, gaussElim_1, gaussElim_2,
39 luST, luSolve', luPacked', magnit, invershur) 39 luST, luSolve', luPacked', magnit, invershur)
@@ -169,7 +169,7 @@ instance forall m . KnownNat m => Container Vector (Mod m I)
169 size' = dim 169 size' = dim
170 scale' s x = vmod (scale (unMod s) (f2i x)) 170 scale' s x = vmod (scale (unMod s) (f2i x))
171 addConstant c x = vmod (addConstant (unMod c) (f2i x)) 171 addConstant c x = vmod (addConstant (unMod c) (f2i x))
172 add a b = vmod (add (f2i a) (f2i b)) 172 add' a b = vmod (add' (f2i a) (f2i b))
173 sub a b = vmod (sub (f2i a) (f2i b)) 173 sub a b = vmod (sub (f2i a) (f2i b))
174 mul a b = vmod (mul (f2i a) (f2i b)) 174 mul a b = vmod (mul (f2i a) (f2i b))
175 equal u v = equal (f2i u) (f2i v) 175 equal u v = equal (f2i u) (f2i v)
@@ -209,7 +209,7 @@ instance forall m . KnownNat m => Container Vector (Mod m Z)
209 size' = dim 209 size' = dim
210 scale' s x = vmod (scale (unMod s) (f2i x)) 210 scale' s x = vmod (scale (unMod s) (f2i x))
211 addConstant c x = vmod (addConstant (unMod c) (f2i x)) 211 addConstant c x = vmod (addConstant (unMod c) (f2i x))
212 add a b = vmod (add (f2i a) (f2i b)) 212 add' a b = vmod (add' (f2i a) (f2i b))
213 sub a b = vmod (sub (f2i a) (f2i b)) 213 sub a b = vmod (sub (f2i a) (f2i b))
214 mul a b = vmod (mul (f2i a) (f2i b)) 214 mul a b = vmod (mul (f2i a) (f2i b))
215 equal u v = equal (f2i u) (f2i v) 215 equal u v = equal (f2i u) (f2i v)
@@ -371,7 +371,9 @@ test = (ok, info)
371 371
372 checkLU okf t = norm_Inf $ flatten (l <> u <> p - t) 372 checkLU okf t = norm_Inf $ flatten (l <> u <> p - t)
373 where 373 where
374 (l,u,p,_ :: Int) = luFact $ mutable (luST okf) t 374 (l,u,p,_ :: Int) = luFact (LU x' p')
375 where
376 (x',p') = mutable (luST okf) t
375 377
376 checkSolve aa = norm_Inf $ flatten (aa <> x - bb) 378 checkSolve aa = norm_Inf $ flatten (aa <> x - bb)
377 where 379 where
diff --git a/packages/base/src/Internal/Numeric.hs b/packages/base/src/Internal/Numeric.hs
index a8ae2bb..e8c7440 100644
--- a/packages/base/src/Internal/Numeric.hs
+++ b/packages/base/src/Internal/Numeric.hs
@@ -49,7 +49,7 @@ class Element e => Container c e
49 scalar' :: e -> c e 49 scalar' :: e -> c e
50 scale' :: e -> c e -> c e 50 scale' :: e -> c e -> c e
51 addConstant :: e -> c e -> c e 51 addConstant :: e -> c e -> c e
52 add :: c e -> c e -> c e 52 add' :: c e -> c e -> c e
53 sub :: c e -> c e -> c e 53 sub :: c e -> c e -> c e
54 -- | element by element multiplication 54 -- | element by element multiplication
55 mul :: c e -> c e -> c e 55 mul :: c e -> c e -> c e
@@ -100,7 +100,7 @@ instance Container Vector I
100 size' = dim 100 size' = dim
101 scale' = vectorMapValI Scale 101 scale' = vectorMapValI Scale
102 addConstant = vectorMapValI AddConstant 102 addConstant = vectorMapValI AddConstant
103 add = vectorZipI Add 103 add' = vectorZipI Add
104 sub = vectorZipI Sub 104 sub = vectorZipI Sub
105 mul = vectorZipI Mul 105 mul = vectorZipI Mul
106 equal u v = dim u == dim v && maxElement' (vectorMapI Abs (sub u v)) == 0 106 equal u v = dim u == dim v && maxElement' (vectorMapI Abs (sub u v)) == 0
@@ -139,7 +139,7 @@ instance Container Vector Z
139 size' = dim 139 size' = dim
140 scale' = vectorMapValL Scale 140 scale' = vectorMapValL Scale
141 addConstant = vectorMapValL AddConstant 141 addConstant = vectorMapValL AddConstant
142 add = vectorZipL Add 142 add' = vectorZipL Add
143 sub = vectorZipL Sub 143 sub = vectorZipL Sub
144 mul = vectorZipL Mul 144 mul = vectorZipL Mul
145 equal u v = dim u == dim v && maxElement' (vectorMapL Abs (sub u v)) == 0 145 equal u v = dim u == dim v && maxElement' (vectorMapL Abs (sub u v)) == 0
@@ -179,7 +179,7 @@ instance Container Vector Float
179 size' = dim 179 size' = dim
180 scale' = vectorMapValF Scale 180 scale' = vectorMapValF Scale
181 addConstant = vectorMapValF AddConstant 181 addConstant = vectorMapValF AddConstant
182 add = vectorZipF Add 182 add' = vectorZipF Add
183 sub = vectorZipF Sub 183 sub = vectorZipF Sub
184 mul = vectorZipF Mul 184 mul = vectorZipF Mul
185 equal u v = dim u == dim v && maxElement (vectorMapF Abs (sub u v)) == 0.0 185 equal u v = dim u == dim v && maxElement (vectorMapF Abs (sub u v)) == 0.0
@@ -216,7 +216,7 @@ instance Container Vector Double
216 size' = dim 216 size' = dim
217 scale' = vectorMapValR Scale 217 scale' = vectorMapValR Scale
218 addConstant = vectorMapValR AddConstant 218 addConstant = vectorMapValR AddConstant
219 add = vectorZipR Add 219 add' = vectorZipR Add
220 sub = vectorZipR Sub 220 sub = vectorZipR Sub
221 mul = vectorZipR Mul 221 mul = vectorZipR Mul
222 equal u v = dim u == dim v && maxElement (vectorMapR Abs (sub u v)) == 0.0 222 equal u v = dim u == dim v && maxElement (vectorMapR Abs (sub u v)) == 0.0
@@ -253,7 +253,7 @@ instance Container Vector (Complex Double)
253 size' = dim 253 size' = dim
254 scale' = vectorMapValC Scale 254 scale' = vectorMapValC Scale
255 addConstant = vectorMapValC AddConstant 255 addConstant = vectorMapValC AddConstant
256 add = vectorZipC Add 256 add' = vectorZipC Add
257 sub = vectorZipC Sub 257 sub = vectorZipC Sub
258 mul = vectorZipC Mul 258 mul = vectorZipC Mul
259 equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0 259 equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0
@@ -289,7 +289,7 @@ instance Container Vector (Complex Float)
289 size' = dim 289 size' = dim
290 scale' = vectorMapValQ Scale 290 scale' = vectorMapValQ Scale
291 addConstant = vectorMapValQ AddConstant 291 addConstant = vectorMapValQ AddConstant
292 add = vectorZipQ Add 292 add' = vectorZipQ Add
293 sub = vectorZipQ Sub 293 sub = vectorZipQ Sub
294 mul = vectorZipQ Mul 294 mul = vectorZipQ Mul
295 equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0 295 equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0
@@ -327,7 +327,7 @@ instance (Num a, Element a, Container Vector a) => Container Matrix a
327 size' = size 327 size' = size
328 scale' x = liftMatrix (scale' x) 328 scale' x = liftMatrix (scale' x)
329 addConstant x = liftMatrix (addConstant x) 329 addConstant x = liftMatrix (addConstant x)
330 add = liftMatrix2 add 330 add' = liftMatrix2 add'
331 sub = liftMatrix2 sub 331 sub = liftMatrix2 sub
332 mul = liftMatrix2 mul 332 mul = liftMatrix2 mul
333 equal a b = cols a == cols b && flatten a `equal` flatten b 333 equal a b = cols a == cols b && flatten a `equal` flatten b
@@ -387,9 +387,6 @@ scalar = scalar'
387conj :: Container c e => c e -> c e 387conj :: Container c e => c e -> c e
388conj = conj' 388conj = conj'
389 389
390-- | multiplication by scalar
391scale :: Container c e => e -> c e -> c e
392scale = scale'
393 390
394arctan2 :: (Fractional e, Container c e) => c e -> c e -> c e 391arctan2 :: (Fractional e, Container c e) => c e -> c e -> c e
395arctan2 = arctan2' 392arctan2 = arctan2'
@@ -581,6 +578,10 @@ class ( Container Vector t
581 , Konst t (Int,Int) Matrix 578 , Konst t (Int,Int) Matrix
582 , CTrans t 579 , CTrans t
583 , Product t 580 , Product t
581 , Additive (Vector t)
582 , Additive (Matrix t)
583 , Linear t Vector
584 , Linear t Matrix
584 ) => Numeric t 585 ) => Numeric t
585 586
586instance Numeric Double 587instance Numeric Double
@@ -912,11 +913,30 @@ instance (CTrans t, Container Vector t) => Transposable (Matrix t) (Matrix t)
912 tr = ctrans 913 tr = ctrans
913 tr' = trans 914 tr' = trans
914 915
915class Linear t v 916class Additive c
916 where 917 where
917 scalarL :: t -> v 918 add :: c -> c -> c
918 addL :: v -> v -> v 919
919 scaleL :: t -> v -> v 920class Linear t c
921 where
922 scale :: t -> c t -> c t
923
924
925instance Container Vector t => Linear t Vector
926 where
927 scale = scale'
928
929instance Container Matrix t => Linear t Matrix
930 where
931 scale = scale'
932
933instance Container Vector t => Additive (Vector t)
934 where
935 add = add'
936
937instance Container Matrix t => Additive (Matrix t)
938 where
939 add = add'
920 940
921 941
922class Testable t 942class Testable t
diff --git a/packages/base/src/Internal/Util.hs b/packages/base/src/Internal/Util.hs
index 4123e6c..36b7855 100644
--- a/packages/base/src/Internal/Util.hs
+++ b/packages/base/src/Internal/Util.hs
@@ -458,12 +458,12 @@ rowOuters a b = a' * b'
458-------------------------------------------------------------------------------- 458--------------------------------------------------------------------------------
459 459
460-- | solution of overconstrained homogeneous linear system 460-- | solution of overconstrained homogeneous linear system
461null1 :: Matrix Double -> Vector Double 461null1 :: Matrix R -> Vector R
462null1 = last . toColumns . snd . rightSV 462null1 = last . toColumns . snd . rightSV
463 463
464-- | solution of overconstrained homogeneous symmetric linear system 464-- | solution of overconstrained homogeneous symmetric linear system
465null1sym :: Matrix Double -> Vector Double 465null1sym :: Her R -> Vector R
466null1sym = last . toColumns . snd . eigSH' 466null1sym = last . toColumns . snd . eigSH
467 467
468-------------------------------------------------------------------------------- 468--------------------------------------------------------------------------------
469 469
@@ -712,7 +712,9 @@ luST ok (r,_) x = do
712 , 0, 0, 0, 0, 1 ] 712 , 0, 0, 0, 0, 1 ]
713 713
714-} 714-}
715luPacked' x = mutable (luST (magnit 0)) x 715luPacked' x = LU m p
716 where
717 (m,p) = mutable (luST (magnit 0)) x
716 718
717-------------------------------------------------------------------------------- 719--------------------------------------------------------------------------------
718 720
@@ -782,7 +784,7 @@ forwSust' lup rhs = foldl' f (rhs?[]) ls
782 (b - l<>x) 784 (b - l<>x)
783 785
784 786
785luSolve'' (lup,p) b = backSust' lup (forwSust' lup pb) 787luSolve'' (LU lup p) b = backSust' lup (forwSust' lup pb)
786 where 788 where
787 pb = b ?? (Pos (fixPerm' p), All) 789 pb = b ?? (Pos (fixPerm' p), All)
788 790
@@ -827,7 +829,7 @@ backSust lup rhs = fst $ mutable f rhs
827 , 7, 10, 6 ] 829 , 7, 10, 6 ]
828 830
829-} 831-}
830luSolve' (lup,p) b = backSust lup (forwSust lup pb) 832luSolve' (LU lup p) b = backSust lup (forwSust lup pb)
831 where 833 where
832 pb = b ?? (Pos (fixPerm' p), All) 834 pb = b ?? (Pos (fixPerm' p), All)
833 835
diff --git a/packages/base/src/Numeric/LinearAlgebra.hs b/packages/base/src/Numeric/LinearAlgebra.hs
index 9a924e0..7be2600 100644
--- a/packages/base/src/Numeric/LinearAlgebra.hs
+++ b/packages/base/src/Numeric/LinearAlgebra.hs
@@ -53,11 +53,11 @@ module Numeric.LinearAlgebra (
53 -- 53 --
54 54
55 -- * Products 55 -- * Products
56 -- ** dot 56 -- ** Dot
57 dot, (<.>), 57 dot, (<.>),
58 -- ** matrix-vector 58 -- ** Matrix-vector
59 (#>), (<#), (!#>), 59 (#>), (<#), (!#>),
60 -- ** matrix-matrix 60 -- ** Matrix-matrix
61 (<>), 61 (<>),
62 -- | The matrix product is also implemented in the "Data.Monoid" instance, where 62 -- | The matrix product is also implemented in the "Data.Monoid" instance, where
63 -- single-element matrices (created from numeric literals or using 'scalar') 63 -- single-element matrices (created from numeric literals or using 'scalar')
@@ -73,20 +73,25 @@ module Numeric.LinearAlgebra (
73 -- 'mconcat' uses 'optimiseMult' to get the optimal association order. 73 -- 'mconcat' uses 'optimiseMult' to get the optimal association order.
74 74
75 75
76 -- ** other 76 -- ** Other
77 outer, kronecker, cross, 77 outer, kronecker, cross,
78 scale, 78 scale, add,
79 sumElements, prodElements, 79 sumElements, prodElements,
80 80
81 -- * Linear systems 81 -- * Linear systems
82 -- ** General
82 (<\>), 83 (<\>),
83 linearSolve,
84 linearSolveLS, 84 linearSolveLS,
85 linearSolveSVD, 85 linearSolveSVD,
86 luSolve, 86 -- ** Determined
87 luSolve', 87 linearSolve,
88 luSolve, luPacked,
89 luSolve', luPacked',
90 -- ** Symmetric indefinite
91 ldlSolve, ldlPacked,
92 -- ** Positive definite
88 cholSolve, 93 cholSolve,
89 ldlSolve, 94 -- ** Sparse
90 cgSolve, 95 cgSolve,
91 cgSolve', 96 cgSolve',
92 97
@@ -113,21 +118,18 @@ module Numeric.LinearAlgebra (
113 leftSV, rightSV, 118 leftSV, rightSV,
114 119
115 -- * Eigendecomposition 120 -- * Eigendecomposition
116 eig, eigSH, eigSH', 121 eig, eigSH,
117 eigenvalues, eigenvaluesSH, eigenvaluesSH', 122 eigenvalues, eigenvaluesSH,
118 geigSH', 123 geigSH,
119 124
120 -- * QR 125 -- * QR
121 qr, rq, qrRaw, qrgr, 126 qr, rq, qrRaw, qrgr,
122 127
123 -- * Cholesky 128 -- * Cholesky
124 chol, cholSH, mbCholSH, 129 chol, mbChol,
125 130
126 -- * LU 131 -- * LU
127 lu, luPacked, luPacked', luFact, 132 lu, luFact,
128
129 -- * LDL
130 ldlPacked, ldlPackedSH,
131 133
132 -- * Hessenberg 134 -- * Hessenberg
133 hess, 135 hess,
@@ -150,14 +152,16 @@ module Numeric.LinearAlgebra (
150 -- * Misc 152 -- * Misc
151 meanCov, rowOuters, pairwiseD2, unitary, peps, relativeError, magnit, 153 meanCov, rowOuters, pairwiseD2, unitary, peps, relativeError, magnit,
152 haussholder, optimiseMult, udot, nullspaceSVD, orthSVD, ranksv, 154 haussholder, optimiseMult, udot, nullspaceSVD, orthSVD, ranksv,
153 iC, 155 iC, sym, xTx, trustSym, her,
154 -- * Auxiliary classes 156 -- * Auxiliary classes
155 Element, Container, Product, Numeric, LSDiv, 157 Element, Container, Product, Numeric, LSDiv, Her,
156 Complexable, RealElement, 158 Complexable, RealElement,
157 RealOf, ComplexOf, SingleOf, DoubleOf, 159 RealOf, ComplexOf, SingleOf, DoubleOf,
158 IndexOf, 160 IndexOf,
159 Field, 161 Field, Linear(), Additive(),
160 Transposable, 162 Transposable,
163 LU(..),
164 LDL(..),
161 CGState(..), 165 CGState(..),
162 Testable(..) 166 Testable(..)
163) where 167) where
@@ -169,7 +173,7 @@ import Numeric.Vector()
169import Internal.Matrix 173import Internal.Matrix
170import Internal.Container hiding ((<>)) 174import Internal.Container hiding ((<>))
171import Internal.Numeric hiding (mul) 175import Internal.Numeric hiding (mul)
172import Internal.Algorithms hiding (linearSolve,Normed,orth,luPacked',linearSolve',luSolve') 176import Internal.Algorithms hiding (linearSolve,Normed,orth,luPacked',linearSolve',luSolve',ldlPacked')
173import qualified Internal.Algorithms as A 177import qualified Internal.Algorithms as A
174import Internal.Util 178import Internal.Util
175import Internal.Random 179import Internal.Random
@@ -246,4 +250,3 @@ nullspace m = nullspaceSVD (Left (1*eps)) m (rightSV m)
246-- | return an orthonormal basis of the range space of a matrix. See also 'orthSVD'. 250-- | return an orthonormal basis of the range space of a matrix. See also 'orthSVD'.
247orth m = orthSVD (Left (1*eps)) m (leftSV m) 251orth m = orthSVD (Left (1*eps)) m (leftSV m)
248 252
249
diff --git a/packages/base/src/Numeric/LinearAlgebra/HMatrix.hs b/packages/base/src/Numeric/LinearAlgebra/HMatrix.hs
index bac1c0c..5ce529c 100644
--- a/packages/base/src/Numeric/LinearAlgebra/HMatrix.hs
+++ b/packages/base/src/Numeric/LinearAlgebra/HMatrix.hs
@@ -13,11 +13,12 @@ compatibility with previous version, to be removed
13 13
14module Numeric.LinearAlgebra.HMatrix ( 14module Numeric.LinearAlgebra.HMatrix (
15 module Numeric.LinearAlgebra, 15 module Numeric.LinearAlgebra,
16 (¦),(——),ℝ,ℂ,(<·>),app,mul 16 (¦),(——),ℝ,ℂ,(<·>),app,mul, cholSH, mbCholSH, eigSH', eigenvaluesSH', geigSH'
17) where 17) where
18 18
19import Numeric.LinearAlgebra 19import Numeric.LinearAlgebra
20import Internal.Util 20import Internal.Util
21import Internal.Algorithms(cholSH, mbCholSH, eigSH', eigenvaluesSH', geigSH')
21 22
22infixr 8 <·> 23infixr 8 <·>
23(<·>) :: Numeric t => Vector t -> Vector t -> t 24(<·>) :: Numeric t => Vector t -> Vector t -> t
diff --git a/packages/base/src/Numeric/LinearAlgebra/Static.hs b/packages/base/src/Numeric/LinearAlgebra/Static.hs
index 0dab0e6..ded69fa 100644
--- a/packages/base/src/Numeric/LinearAlgebra/Static.hs
+++ b/packages/base/src/Numeric/LinearAlgebra/Static.hs
@@ -63,9 +63,9 @@ import GHC.TypeLits
63import Numeric.LinearAlgebra hiding ( 63import Numeric.LinearAlgebra hiding (
64 (<>),(#>),(<.>),Konst(..),diag, disp,(===),(|||), 64 (<>),(#>),(<.>),Konst(..),diag, disp,(===),(|||),
65 row,col,vector,matrix,linspace,toRows,toColumns, 65 row,col,vector,matrix,linspace,toRows,toColumns,
66 (<\>),fromList,takeDiag,svd,eig,eigSH,eigSH', 66 (<\>),fromList,takeDiag,svd,eig,eigSH,
67 eigenvalues,eigenvaluesSH,eigenvaluesSH',build, 67 eigenvalues,eigenvaluesSH,build,
68 qr,size,dot,chol,range,R,C) 68 qr,size,dot,chol,range,R,C,Her,her,sym)
69import qualified Numeric.LinearAlgebra as LA 69import qualified Numeric.LinearAlgebra as LA
70import Data.Proxy(Proxy) 70import Data.Proxy(Proxy)
71import Internal.Static 71import Internal.Static
@@ -292,10 +292,10 @@ her m = Her $ (m + LA.tr m)/2
292 292
293instance KnownNat n => Eigen (Sym n) (R n) (L n n) 293instance KnownNat n => Eigen (Sym n) (R n) (L n n)
294 where 294 where
295 eigenvalues (Sym (extract -> m)) = mkR . LA.eigenvaluesSH' $ m 295 eigenvalues (Sym (extract -> m)) = mkR . LA.eigenvaluesSH . LA.trustSym $ m
296 eigensystem (Sym (extract -> m)) = (mkR l, mkL v) 296 eigensystem (Sym (extract -> m)) = (mkR l, mkL v)
297 where 297 where
298 (l,v) = LA.eigSH' m 298 (l,v) = LA.eigSH . LA.trustSym $ m
299 299
300instance KnownNat n => Eigen (Sq n) (C n) (M n n) 300instance KnownNat n => Eigen (Sq n) (C n) (M n n)
301 where 301 where
@@ -305,7 +305,7 @@ instance KnownNat n => Eigen (Sq n) (C n) (M n n)
305 (l,v) = LA.eig m 305 (l,v) = LA.eig m
306 306
307chol :: KnownNat n => Sym n -> Sq n 307chol :: KnownNat n => Sym n -> Sq n
308chol (extract . unSym -> m) = mkL $ LA.cholSH m 308chol (extract . unSym -> m) = mkL $ LA.chol $ LA.trustSym m
309 309
310-------------------------------------------------------------------------------- 310--------------------------------------------------------------------------------
311 311
diff --git a/packages/tests/src/Numeric/LinearAlgebra/Tests.hs b/packages/tests/src/Numeric/LinearAlgebra/Tests.hs
index 2ff1580..30480d7 100644
--- a/packages/tests/src/Numeric/LinearAlgebra/Tests.hs
+++ b/packages/tests/src/Numeric/LinearAlgebra/Tests.hs
@@ -127,8 +127,8 @@ expmTest2 = expm nd2 :~15~: (2><2)
127mbCholTest = utest "mbCholTest" (ok1 && ok2) where 127mbCholTest = utest "mbCholTest" (ok1 && ok2) where
128 m1 = (2><2) [2,5,5,8 :: Double] 128 m1 = (2><2) [2,5,5,8 :: Double]
129 m2 = (2><2) [3,5,5,9 :: Complex Double] 129 m2 = (2><2) [3,5,5,9 :: Complex Double]
130 ok1 = mbCholSH m1 == Nothing 130 ok1 = mbChol (trustSym m1) == Nothing
131 ok2 = mbCholSH m2 == Just (chol m2) 131 ok2 = mbChol (trustSym m2) == Just (chol $ trustSym m2)
132 132
133--------------------------------------------------------------------- 133---------------------------------------------------------------------
134 134
@@ -403,8 +403,8 @@ indexProp g f x = a1 == g a2 && a2 == a3 && b1 == g b2 && b2 == b3
403-------------------------------------------------------------------------------- 403--------------------------------------------------------------------------------
404 404
405sliceTest = utest "slice test" $ and 405sliceTest = utest "slice test" $ and
406 [ testSlice chol (gen 5 :: Matrix R) 406 [ testSlice (chol . trustSym) (gen 5 :: Matrix R)
407 , testSlice chol (gen 5 :: Matrix C) 407 , testSlice (chol . trustSym) (gen 5 :: Matrix C)
408 , testSlice qr (rec :: Matrix R) 408 , testSlice qr (rec :: Matrix R)
409 , testSlice qr (rec :: Matrix C) 409 , testSlice qr (rec :: Matrix C)
410 , testSlice hess (agen 5 :: Matrix R) 410 , testSlice hess (agen 5 :: Matrix R)
@@ -420,12 +420,12 @@ sliceTest = utest "slice test" $ and
420 420
421 , testSlice eig (agen 5 :: Matrix R) 421 , testSlice eig (agen 5 :: Matrix R)
422 , testSlice eig (agen 5 :: Matrix C) 422 , testSlice eig (agen 5 :: Matrix C)
423 , testSlice eigSH (gen 5 :: Matrix R) 423 , testSlice (eigSH . trustSym) (gen 5 :: Matrix R)
424 , testSlice eigSH (gen 5 :: Matrix C) 424 , testSlice (eigSH . trustSym) (gen 5 :: Matrix C)
425 , testSlice eigenvalues (agen 5 :: Matrix R) 425 , testSlice eigenvalues (agen 5 :: Matrix R)
426 , testSlice eigenvalues (agen 5 :: Matrix C) 426 , testSlice eigenvalues (agen 5 :: Matrix C)
427 , testSlice eigenvaluesSH (gen 5 :: Matrix R) 427 , testSlice (eigenvaluesSH . trustSym) (gen 5 :: Matrix R)
428 , testSlice eigenvaluesSH (gen 5 :: Matrix C) 428 , testSlice (eigenvaluesSH . trustSym) (gen 5 :: Matrix C)
429 429
430 , testSlice svd (rec :: Matrix R) 430 , testSlice svd (rec :: Matrix R)
431 , testSlice thinSVD (rec :: Matrix R) 431 , testSlice thinSVD (rec :: Matrix R)
@@ -489,10 +489,10 @@ sliceTest = utest "slice test" $ and
489 , testSlice ((<>) (ogen 5:: Matrix (Z ./. 7))) (gen 5) 489 , testSlice ((<>) (ogen 5:: Matrix (Z ./. 7))) (gen 5)
490 , testSlice (flip (<>) (gen 5:: Matrix (Z ./. 7))) (ogen 5) 490 , testSlice (flip (<>) (gen 5:: Matrix (Z ./. 7))) (ogen 5)
491 491
492 , testSlice (flip cholSolve (agen 5:: Matrix R)) (chol $ gen 5) 492 , testSlice (flip cholSolve (agen 5:: Matrix R)) (chol $ trustSym $ gen 5)
493 , testSlice (flip cholSolve (agen 5:: Matrix C)) (chol $ gen 5) 493 , testSlice (flip cholSolve (agen 5:: Matrix C)) (chol $ trustSym $ gen 5)
494 , testSlice (cholSolve (chol $ gen 5:: Matrix R)) (agen 5) 494 , testSlice (cholSolve (chol $ trustSym $ gen 5:: Matrix R)) (agen 5)
495 , testSlice (cholSolve (chol $ gen 5:: Matrix C)) (agen 5) 495 , testSlice (cholSolve (chol $ trustSym $ gen 5:: Matrix C)) (agen 5)
496 496
497 , ok_qrgr (rec :: Matrix R) 497 , ok_qrgr (rec :: Matrix R)
498 , ok_qrgr (rec :: Matrix C) 498 , ok_qrgr (rec :: Matrix C)
@@ -515,8 +515,8 @@ sliceTest = utest "slice test" $ and
515 515
516 test_lus m = testSlice f lup 516 test_lus m = testSlice f lup
517 where 517 where
518 f x = luSolve (x,p) m 518 f x = luSolve (LU x p) m
519 (lup,p) = luPacked m 519 (LU lup p) = luPacked m
520 520
521 gen :: Numeric t => Int -> Matrix t 521 gen :: Numeric t => Int -> Matrix t
522 gen n = diagRect 1 (konst 5 n) n n 522 gen n = diagRect 1 (konst 5 n) n n
@@ -588,11 +588,11 @@ runTests n = do
588 test (linearSolveProp (luSolve.luPacked) . rSqWC) 588 test (linearSolveProp (luSolve.luPacked) . rSqWC)
589 test (linearSolveProp (luSolve.luPacked) . cSqWC) 589 test (linearSolveProp (luSolve.luPacked) . cSqWC)
590 putStrLn "------ ldlSolve" 590 putStrLn "------ ldlSolve"
591 test (linearSolveProp (ldlSolve.ldlPacked) . rSymWC) 591 test (linearSolvePropH (ldlSolve.ldlPacked) . rSymWC)
592 test (linearSolveProp (ldlSolve.ldlPacked) . cSymWC) 592 test (linearSolvePropH (ldlSolve.ldlPacked) . cSymWC)
593 putStrLn "------ cholSolve" 593 putStrLn "------ cholSolve"
594 test (linearSolveProp (cholSolve.chol) . rPosDef) 594 test (linearSolveProp (cholSolve.chol.trustSym) . rPosDef)
595 test (linearSolveProp (cholSolve.chol) . cPosDef) 595 test (linearSolveProp (cholSolve.chol.trustSym) . cPosDef)
596 putStrLn "------ luSolveLS" 596 putStrLn "------ luSolveLS"
597 test (linearSolveProp linearSolveLS . rSqWC) 597 test (linearSolveProp linearSolveLS . rSqWC)
598 test (linearSolveProp linearSolveLS . cSqWC) 598 test (linearSolveProp linearSolveLS . cSqWC)
@@ -865,8 +865,8 @@ eigBench = do
865 let m = reshape 1000 (randomVector 777 Uniform (1000*1000)) 865 let m = reshape 1000 (randomVector 777 Uniform (1000*1000))
866 s = m + tr m 866 s = m + tr m
867 m `seq` s `seq` putStrLn "" 867 m `seq` s `seq` putStrLn ""
868 time "eigenvalues symmetric 1000x1000" (eigenvaluesSH' m) 868 time "eigenvalues symmetric 1000x1000" (eigenvaluesSH (trustSym m))
869 time "eigenvectors symmetric 1000x1000" (snd $ eigSH' m) 869 time "eigenvectors symmetric 1000x1000" (snd $ eigSH (trustSym m))
870 time "eigenvalues general 1000x1000" (eigenvalues m) 870 time "eigenvalues general 1000x1000" (eigenvalues m)
871 time "eigenvectors general 1000x1000" (snd $ eig m) 871 time "eigenvectors general 1000x1000" (snd $ eig m)
872 872
@@ -893,12 +893,14 @@ solveBenchN n = do
893 time ("svd solve " ++ show n) (linearSolveSVD a b) 893 time ("svd solve " ++ show n) (linearSolveSVD a b)
894 time (" ls solve " ++ show n) (linearSolveLS a b) 894 time (" ls solve " ++ show n) (linearSolveLS a b)
895 time (" solve " ++ show n) (linearSolve a b) 895 time (" solve " ++ show n) (linearSolve a b)
896 time ("cholSolve " ++ show n) (cholSolve (chol a) b) 896-- time (" LU solve " ++ show n) (luSolve (luPacked a) b)
897 time ("LDL solve " ++ show n) (ldlSolve (ldlPacked (trustSym a)) b)
898 time ("cholSolve " ++ show n) (cholSolve (chol $ trustSym a) b)
897 899
898solveBench = do 900solveBench = do
899 solveBenchN 500 901 solveBenchN 500
900 solveBenchN 1000 902 solveBenchN 1000
901 -- solveBenchN 1500 903 solveBenchN 1500
902 904
903-------------------------------- 905--------------------------------
904 906
@@ -906,7 +908,7 @@ cholBenchN n = do
906 let x = uniformSample 777 (2*n) (replicate n (-1,1)) 908 let x = uniformSample 777 (2*n) (replicate n (-1,1))
907 a = tr x <> x 909 a = tr x <> x
908 a `seq` putStr "" 910 a `seq` putStr ""
909 time ("chol " ++ show n) (chol a) 911 time ("chol " ++ show n) (chol $ trustSym a)
910 912
911cholBench = do 913cholBench = do
912 putStrLn "" 914 putStrLn ""
diff --git a/packages/tests/src/Numeric/LinearAlgebra/Tests/Instances.hs b/packages/tests/src/Numeric/LinearAlgebra/Tests/Instances.hs
index 7c54535..4704989 100644
--- a/packages/tests/src/Numeric/LinearAlgebra/Tests/Instances.hs
+++ b/packages/tests/src/Numeric/LinearAlgebra/Tests/Instances.hs
@@ -14,7 +14,7 @@ Arbitrary instances for vectors, matrices.
14module Numeric.LinearAlgebra.Tests.Instances( 14module Numeric.LinearAlgebra.Tests.Instances(
15 Sq(..), rSq,cSq, 15 Sq(..), rSq,cSq,
16 Rot(..), rRot,cRot, 16 Rot(..), rRot,cRot,
17 Her(..), rHer,cHer, 17 rHer,cHer,
18 WC(..), rWC,cWC, 18 WC(..), rWC,cWC,
19 SqWC(..), rSqWC, cSqWC, rSymWC, cSymWC, 19 SqWC(..), rSqWC, cSqWC, rSymWC, cSymWC,
20 PosDef(..), rPosDef, cPosDef, 20 PosDef(..), rPosDef, cPosDef,
@@ -81,12 +81,12 @@ instance (Field a, Arbitrary a) => Arbitrary (Rot a) where
81 81
82 82
83-- a complex hermitian or real symmetric matrix 83-- a complex hermitian or real symmetric matrix
84newtype (Her a) = Her (Matrix a) deriving Show 84--newtype (Her a) = Her (Matrix a) deriving Show
85instance (Field a, Arbitrary a, Num (Vector a)) => Arbitrary (Her a) where 85instance (Field a, Arbitrary a, Num (Vector a)) => Arbitrary (Her a) where
86 arbitrary = do 86 arbitrary = do
87 Sq m <- arbitrary 87 Sq m <- arbitrary
88 let m' = m/2 88 let m' = m/2
89 return $ Her (m' + tr m') 89 return $ sym m'
90 90
91 91
92class (Field a, Arbitrary a, Element (RealOf a), Random (RealOf a)) => ArbitraryField a 92class (Field a, Arbitrary a, Element (RealOf a), Random (RealOf a)) => ArbitraryField a
@@ -125,9 +125,9 @@ newtype (PosDef a) = PosDef (Matrix a) deriving Show
125instance (Numeric a, ArbitraryField a, Num (Vector a)) 125instance (Numeric a, ArbitraryField a, Num (Vector a))
126 => Arbitrary (PosDef a) where 126 => Arbitrary (PosDef a) where
127 arbitrary = do 127 arbitrary = do
128 Her m <- arbitrary 128 m <- arbitrary
129 let (_,v) = eigSH m 129 let (_,v) = eigSH m
130 n = rows m 130 n = rows (her m)
131 l <- replicateM n (choose (0,100)) 131 l <- replicateM n (choose (0,100))
132 let s = diag (fromList l) 132 let s = diag (fromList l)
133 p = v <> real s <> tr v 133 p = v <> real s <> tr v
@@ -161,8 +161,8 @@ fM m = m :: FM
161zM m = m :: ZM 161zM m = m :: ZM
162 162
163 163
164rHer (Her m) = m :: RM 164rHer m = her m :: RM
165cHer (Her m) = m :: CM 165cHer m = her m :: CM
166 166
167rRot (Rot m) = m :: RM 167rRot (Rot m) = m :: RM
168cRot (Rot m) = m :: CM 168cRot (Rot m) = m :: CM
@@ -176,8 +176,8 @@ cWC (WC m) = m :: CM
176rSqWC (SqWC m) = m :: RM 176rSqWC (SqWC m) = m :: RM
177cSqWC (SqWC m) = m :: CM 177cSqWC (SqWC m) = m :: CM
178 178
179rSymWC (SqWC m) = m + tr m :: RM 179rSymWC (SqWC m) = sym m :: Her R
180cSymWC (SqWC m) = m + tr m :: CM 180cSymWC (SqWC m) = sym m :: Her C
181 181
182rPosDef (PosDef m) = m :: RM 182rPosDef (PosDef m) = m :: RM
183cPosDef (PosDef m) = m :: CM 183cPosDef (PosDef m) = m :: CM
diff --git a/packages/tests/src/Numeric/LinearAlgebra/Tests/Properties.hs b/packages/tests/src/Numeric/LinearAlgebra/Tests/Properties.hs
index 207a303..2ac3588 100644
--- a/packages/tests/src/Numeric/LinearAlgebra/Tests/Properties.hs
+++ b/packages/tests/src/Numeric/LinearAlgebra/Tests/Properties.hs
@@ -39,7 +39,7 @@ module Numeric.LinearAlgebra.Tests.Properties (
39 expmDiagProp, 39 expmDiagProp,
40 multProp1, multProp2, 40 multProp1, multProp2,
41 subProp, 41 subProp,
42 linearSolveProp, linearSolveProp2 42 linearSolveProp, linearSolvePropH, linearSolveProp2
43) where 43) where
44 44
45import Numeric.LinearAlgebra.HMatrix hiding (Testable,unitary) 45import Numeric.LinearAlgebra.HMatrix hiding (Testable,unitary)
@@ -209,11 +209,11 @@ eigProp m = complex m <> v |~| v <> diag s
209eigSHProp m = m <> v |~| v <> real (diag s) 209eigSHProp m = m <> v |~| v <> real (diag s)
210 && unitary v 210 && unitary v
211 && m |~| v <> real (diag s) <> tr v 211 && m |~| v <> real (diag s) <> tr v
212 where (s, v) = eigSH m 212 where (s, v) = eigSH' m
213 213
214eigProp2 m = fst (eig m) |~| eigenvalues m 214eigProp2 m = fst (eig m) |~| eigenvalues m
215 215
216eigSHProp2 m = fst (eigSH m) |~| eigenvaluesSH m 216eigSHProp2 m = fst (eigSH' m) |~| eigenvaluesSH' m
217 217
218------------------------------------------------------------------ 218------------------------------------------------------------------
219 219
@@ -246,9 +246,9 @@ schurProp2 m = m |~| u <> s <> tr u && unitary u && upperHessenberg s -- fixme
246 where (u,s) = schur m 246 where (u,s) = schur m
247 247
248cholProp m = m |~| tr c <> c && upperTriang c 248cholProp m = m |~| tr c <> c && upperTriang c
249 where c = chol m 249 where c = chol (trustSym m)
250 250
251exactProp m = chol m == chol (m+0) 251exactProp m = chol (trustSym m) == chol (trustSym (m+0))
252 252
253expmDiagProp m = expm (logm m) :~ 7 ~: complex m 253expmDiagProp m = expm (logm m) :~ 7 ~: complex m
254 where logm = matFunc log 254 where logm = matFunc log
@@ -263,6 +263,8 @@ multProp2 p (a,b) = (tr (a <> b)) :~p~: (tr b <> tr a)
263 263
264linearSolveProp f m = f m m |~| ident (rows m) 264linearSolveProp f m = f m m |~| ident (rows m)
265 265
266linearSolvePropH f m = f m (her m) |~| ident (rows (her m))
267
266linearSolveProp2 f (a,x) = not wc `trivial` (not wc || a <> f a b |~| b) 268linearSolveProp2 f (a,x) = not wc `trivial` (not wc || a <> f a b |~| b)
267 where q = min (rows a) (cols a) 269 where q = min (rows a) (cols a)
268 b = a <> x 270 b = a <> x