summaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
Diffstat (limited to 'examples')
-rw-r--r--examples/oldtests.hs20
-rw-r--r--examples/tests.hs17
2 files changed, 19 insertions, 18 deletions
diff --git a/examples/oldtests.hs b/examples/oldtests.hs
index b01675f..f60f4e2 100644
--- a/examples/oldtests.hs
+++ b/examples/oldtests.hs
@@ -5,14 +5,14 @@ import System.Random(randomRs,mkStdGen)
5realMatrix = fromLists :: [[Double]] -> Matrix Double 5realMatrix = fromLists :: [[Double]] -> Matrix Double
6realVector = fromList :: [Double] -> Vector Double 6realVector = fromList :: [Double] -> Vector Double
7 7
8toComplexM = uncurry $ liftMatrix2 (curry toComplex) 8
9 9
10infixl 2 =~= 10infixl 2 =~=
11a =~= b = pnorm 1 (flatten (a - b)) < 1E-6 11a =~= b = pnorm 1 (flatten (a - b)) < 1E-6
12 12
13randomMatrix seed (n,m) = reshape m $ realVector $ take (n*m) $ randomRs (-100,100) $ mkStdGen seed 13randomMatrix seed (n,m) = reshape m $ realVector $ take (n*m) $ randomRs (-100,100) $ mkStdGen seed
14 14
15randomMatrixC seed (n,m) = toComplexM (randomMatrix seed (n,m), randomMatrix (seed+1) (n,m)) 15randomMatrixC seed (n,m) = toComplex (randomMatrix seed (n,m), randomMatrix (seed+1) (n,m))
16 16
17besselTest = do 17besselTest = do
18 let (r,e) = bessel_J0_e 5.0 18 let (r,e) = bessel_J0_e 5.0
@@ -31,7 +31,7 @@ ms = realMatrix [[1,2,3]
31 31
32ms' = randomMatrix 27 (50,100) 32ms' = randomMatrix 27 (50,100)
33 33
34ms'' = toComplexM (randomMatrix 100 (50,100),randomMatrix 101 (50,100)) 34ms'' = toComplex (randomMatrix 100 (50,100),randomMatrix 101 (50,100))
35 35
36fullsvdTest method mat msg = do 36fullsvdTest method mat msg = do
37 let (u,s,vt) = method mat 37 let (u,s,vt) = method mat
@@ -43,7 +43,7 @@ full_svd_Rd = svdRdd
43 43
44-------------------------------------------------------------------- 44--------------------------------------------------------------------
45 45
46mcu = toComplexM (randomMatrix 33 (20,20),randomMatrix 34 (20,20)) 46mcu = toComplex (randomMatrix 33 (20,20),randomMatrix 34 (20,20))
47 47
48mcur = randomMatrix 35 (40,40) 48mcur = randomMatrix 35 (40,40)
49 49
@@ -53,7 +53,7 @@ eigTest method m msg = do
53 assertBool msg $ m <> v =~= v <> diag s 53 assertBool msg $ m <> v =~= v <> diag s
54 54
55bigmat = m + trans m where m = randomMatrix 18 (1000,1000) 55bigmat = m + trans m where m = randomMatrix 18 (1000,1000)
56bigmatc = mc + conjTrans mc where mc = toComplexM(m,m) 56bigmatc = mc + conjTrans mc where mc = toComplex(m,m)
57 m = randomMatrix 19 (1000,1000) 57 m = randomMatrix 19 (1000,1000)
58 58
59-------------------------------------------------------------------- 59--------------------------------------------------------------------
@@ -62,22 +62,22 @@ invTest msg m = do
62 assertBool msg $ m <> inv m =~= ident (rows m) 62 assertBool msg $ m <> inv m =~= ident (rows m)
63 63
64invComplexTest msg m = do 64invComplexTest msg m = do
65 assertBool msg $ m <> invC m =~= ident (rows m) 65 assertBool msg $ m <> invC m =~= identC (rows m)
66 66
67invC m = linearSolveC m (ident (rows m)) 67invC m = linearSolveC m (identC (rows m))
68 68
69--identC n = toComplexM(ident n, (0::Double) <>ident n) 69identC = comp . ident
70 70
71-------------------------------------------------------------------- 71--------------------------------------------------------------------
72 72
73pinvTest f msg m = do 73pinvTest f msg m = do
74 assertBool msg $ m <> f m <> m =~= m 74 assertBool msg $ m <> f m <> m =~= m
75 75
76pinvC m = linearSolveLSC m (ident (rows m)) 76pinvC m = linearSolveLSC m (identC (rows m))
77 77
78pinvSVDR m = linearSolveSVDR Nothing m (ident (rows m)) 78pinvSVDR m = linearSolveSVDR Nothing m (ident (rows m))
79 79
80pinvSVDC m = linearSolveSVDC Nothing m (ident (rows m)) 80pinvSVDC m = linearSolveSVDC Nothing m (identC (rows m))
81 81
82-------------------------------------------------------------------- 82--------------------------------------------------------------------
83 83
diff --git a/examples/tests.hs b/examples/tests.hs
index 0a09ced..2f3b3d8 100644
--- a/examples/tests.hs
+++ b/examples/tests.hs
@@ -6,10 +6,9 @@
6 6
7----------------------------------------------------------------------------- 7-----------------------------------------------------------------------------
8 8
9import Data.Packed.Internal 9import Data.Packed.Internal((>|<), fdat, cdat, multiply', multiplyG, MatrixOrder(..))
10import Data.Packed.Vector 10import Data.Packed.Vector
11import Data.Packed.Matrix 11import Data.Packed.Matrix
12import Data.Packed.Internal.Matrix
13import GSL.Vector 12import GSL.Vector
14import GSL.Integration 13import GSL.Integration
15import GSL.Differentiation 14import GSL.Differentiation
@@ -95,6 +94,8 @@ asC m = (rows m >< cols m) $ toList (cdat m)
95mulC a b = multiply' RowMajor a b 94mulC a b = multiply' RowMajor a b
96mulF a b = multiply' ColumnMajor a b 95mulF a b = multiply' ColumnMajor a b
97 96
97identC = comp . ident
98
98infixl 7 <> 99infixl 7 <>
99a <> b = mulF a b 100a <> b = mulF a b
100 101
@@ -198,15 +199,15 @@ svdTestR fun m = u <> s <> trans v |~| m
198 199
199 200
200svdTestC m = u <> s' <> (trans v) |~| m 201svdTestC m = u <> s' <> (trans v) |~| m
201 && u <> conjTrans u |~| ident (rows m) 202 && u <> conjTrans u |~| identC (rows m)
202 && v <> conjTrans v |~| ident (cols m) 203 && v <> conjTrans v |~| identC (cols m)
203 where (u,s,v) = svdC m 204 where (u,s,v) = svdC m
204 s' = liftMatrix comp s 205 s' = liftMatrix comp s
205 206
206--svdg' m = (u,s',v) where 207--svdg' m = (u,s',v) where
207 208
208eigTestC (SqM m) = (m <> v) |~| (v <> diag s) 209eigTestC (SqM m) = (m <> v) |~| (v <> diag s)
209 && takeDiag (conjTrans v <> v) |~| constant 1 (rows m) --normalized 210 && takeDiag (conjTrans v <> v) |~| comp (constant 1 (rows m)) --normalized
210 where (s,v) = eigC m 211 where (s,v) = eigC m
211 212
212eigTestR (SqM m) = (liftMatrix comp m <> v) |~| (v <> diag s) 213eigTestR (SqM m) = (liftMatrix comp m <> v) |~| (v <> diag s)
@@ -218,7 +219,7 @@ eigTestS (Sym m) = (m <> v) |~| (v <> diag s)
218 where (s,v) = eigS m 219 where (s,v) = eigS m
219 220
220eigTestH (Her m) = (m <> v) |~| (v <> diag (comp s)) 221eigTestH (Her m) = (m <> v) |~| (v <> diag (comp s))
221 && v <> conjTrans v |~| ident (cols m) 222 && v <> conjTrans v |~| identC (cols m)
222 where (s,v) = eigH m 223 where (s,v) = eigH m
223 224
224linearSolveSQTest fun singu (PairSM a b) = singu a || (a <> fun a b) |~| b 225linearSolveSQTest fun singu (PairSM a b) = singu a || (a <> fun a b) |~| b
@@ -248,11 +249,11 @@ identC n = toComplex(ident n, (0::Double) <>ident n)
248pinvTest f m = (m <> f m <> m) |~| m 249pinvTest f m = (m <> f m <> m) |~| m
249 250
250pinvR m = linearSolveLSR m (ident (rows m)) 251pinvR m = linearSolveLSR m (ident (rows m))
251pinvC m = linearSolveLSC m (ident (rows m)) 252pinvC m = linearSolveLSC m (identC (rows m))
252 253
253pinvSVDR m = linearSolveSVDR Nothing m (ident (rows m)) 254pinvSVDR m = linearSolveSVDR Nothing m (ident (rows m))
254 255
255pinvSVDC m = linearSolveSVDC Nothing m (ident (rows m)) 256pinvSVDC m = linearSolveSVDC Nothing m (identC (rows m))
256 257
257-------------------------------------------------------------------- 258--------------------------------------------------------------------
258 259