diff options
Diffstat (limited to 'lib')
-rw-r--r-- | lib/Data/Packed/Development.hs | 1 | ||||
-rw-r--r-- | lib/Data/Packed/Internal/Common.hs | 31 | ||||
-rw-r--r-- | lib/Data/Packed/Matrix.hs | 15 | ||||
-rw-r--r-- | lib/Data/Packed/Random.hs | 1 | ||||
-rw-r--r-- | lib/Numeric/GSL/ODE.hs | 1 | ||||
-rw-r--r-- | lib/Numeric/LinearAlgebra/Algorithms.hs | 44 | ||||
-rw-r--r-- | lib/Numeric/LinearAlgebra/LAPACK.hs | 1 | ||||
-rw-r--r-- | lib/Numeric/LinearAlgebra/Tests/Properties.hs | 2 |
8 files changed, 49 insertions, 47 deletions
diff --git a/lib/Data/Packed/Development.hs b/lib/Data/Packed/Development.hs index 9f723b4..3eb7552 100644 --- a/lib/Data/Packed/Development.hs +++ b/lib/Data/Packed/Development.hs | |||
@@ -20,6 +20,7 @@ module Data.Packed.Development ( | |||
20 | Adapt, | 20 | Adapt, |
21 | vec, mat, | 21 | vec, mat, |
22 | app1, app2, app3, app4, | 22 | app1, app2, app3, app4, |
23 | app5, app6, app7, app8, app9, app10, | ||
23 | MatrixOrder(..), orderOf, cmat, fmat, | 24 | MatrixOrder(..), orderOf, cmat, fmat, |
24 | unsafeFromForeignPtr, | 25 | unsafeFromForeignPtr, |
25 | unsafeToForeignPtr, | 26 | unsafeToForeignPtr, |
diff --git a/lib/Data/Packed/Internal/Common.hs b/lib/Data/Packed/Internal/Common.hs index 455b176..c348575 100644 --- a/lib/Data/Packed/Internal/Common.hs +++ b/lib/Data/Packed/Internal/Common.hs | |||
@@ -17,6 +17,7 @@ | |||
17 | module Data.Packed.Internal.Common( | 17 | module Data.Packed.Internal.Common( |
18 | Adapt, | 18 | Adapt, |
19 | app1, app2, app3, app4, | 19 | app1, app2, app3, app4, |
20 | app5, app6, app7, app8, app9, app10, | ||
20 | (//), check, mbCatch, | 21 | (//), check, mbCatch, |
21 | splitEvery, common, compatdim, | 22 | splitEvery, common, compatdim, |
22 | fi, | 23 | fi, |
@@ -69,9 +70,15 @@ fi :: Int -> CInt | |||
69 | fi = fromIntegral | 70 | fi = fromIntegral |
70 | 71 | ||
71 | -- hmm.. | 72 | -- hmm.. |
72 | ww2 w1 o1 w2 o2 f = w1 o1 $ \a1 -> w2 o2 $ \a2 -> f a1 a2 | 73 | ww2 w1 o1 w2 o2 f = w1 o1 $ w2 o2 . f |
73 | ww3 w1 o1 w2 o2 w3 o3 f = w1 o1 $ \a1 -> ww2 w2 o2 w3 o3 (f a1) | 74 | ww3 w1 o1 w2 o2 w3 o3 f = w1 o1 $ ww2 w2 o2 w3 o3 . f |
74 | ww4 w1 o1 w2 o2 w3 o3 w4 o4 f = w1 o1 $ \a1 -> ww3 w2 o2 w3 o3 w4 o4 (f a1) | 75 | ww4 w1 o1 w2 o2 w3 o3 w4 o4 f = w1 o1 $ ww3 w2 o2 w3 o3 w4 o4 . f |
76 | ww5 w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 f = w1 o1 $ ww4 w2 o2 w3 o3 w4 o4 w5 o5 . f | ||
77 | ww6 w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 f = w1 o1 $ ww5 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 . f | ||
78 | ww7 w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 f = w1 o1 $ ww6 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 . f | ||
79 | ww8 w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 w8 o8 f = w1 o1 $ ww7 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 w8 o8 . f | ||
80 | ww9 w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 w8 o8 w9 o9 f = w1 o1 $ ww8 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 w8 o8 w9 o9 . f | ||
81 | ww10 w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 w8 o8 w9 o9 w10 o10 f = w1 o1 $ ww9 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 w8 o8 w9 o9 w10 o10 . f | ||
75 | 82 | ||
76 | type Adapt f t r = t -> ((f -> r) -> IO()) -> IO() | 83 | type Adapt f t r = t -> ((f -> r) -> IO()) -> IO() |
77 | 84 | ||
@@ -115,8 +122,22 @@ app1 f w1 o1 s = w1 o1 $ \a1 -> f // a1 // check s | |||
115 | app2 f w1 o1 w2 o2 s = ww2 w1 o1 w2 o2 $ \a1 a2 -> f // a1 // a2 // check s | 122 | app2 f w1 o1 w2 o2 s = ww2 w1 o1 w2 o2 $ \a1 a2 -> f // a1 // a2 // check s |
116 | app3 f w1 o1 w2 o2 w3 o3 s = ww3 w1 o1 w2 o2 w3 o3 $ | 123 | app3 f w1 o1 w2 o2 w3 o3 s = ww3 w1 o1 w2 o2 w3 o3 $ |
117 | \a1 a2 a3 -> f // a1 // a2 // a3 // check s | 124 | \a1 a2 a3 -> f // a1 // a2 // a3 // check s |
118 | app4 f w1 o1 w2 o2 w3 o3 w4 o4 s = ww4 w1 o1 w2 o2 w3 o3 w4 o4 $ | 125 | app4 f w1 o1 w2 o2 w3 o3 w4 o4 s = ww4 w1 o1 w2 o2 w3 o3 w4 o4 $ |
119 | \a1 a2 a3 a4 -> f // a1 // a2 // a3 // a4 // check s | 126 | \a1 a2 a3 a4 -> f // a1 // a2 // a3 // a4 // check s |
127 | app5 f w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 s = ww5 w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 $ | ||
128 | \a1 a2 a3 a4 a5 -> f // a1 // a2 // a3 // a4 // a5 // check s | ||
129 | app6 f w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 s = ww6 w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 $ | ||
130 | \a1 a2 a3 a4 a5 a6 -> f // a1 // a2 // a3 // a4 // a5 // a6 // check s | ||
131 | app7 f w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 s = ww7 w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 $ | ||
132 | \a1 a2 a3 a4 a5 a6 a7 -> f // a1 // a2 // a3 // a4 // a5 // a6 // a7 // check s | ||
133 | app8 f w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 w8 o8 s = ww8 w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 w8 o8 $ | ||
134 | \a1 a2 a3 a4 a5 a6 a7 a8 -> f // a1 // a2 // a3 // a4 // a5 // a6 // a7 // a8 // check s | ||
135 | app9 f w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 w8 o8 w9 o9 s = ww9 w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 w8 o8 w9 o9 $ | ||
136 | \a1 a2 a3 a4 a5 a6 a7 a8 a9 -> f // a1 // a2 // a3 // a4 // a5 // a6 // a7 // a8 // a9 // check s | ||
137 | app10 f w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 w8 o8 w9 o9 w10 o10 s = ww10 w1 o1 w2 o2 w3 o3 w4 o4 w5 o5 w6 o6 w7 o7 w8 o8 w9 o9 w10 o10 $ | ||
138 | \a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 -> f // a1 // a2 // a3 // a4 // a5 // a6 // a7 // a8 // a9 // a10 // check s | ||
139 | |||
140 | |||
120 | 141 | ||
121 | -- GSL error codes are <= 1024 | 142 | -- GSL error codes are <= 1024 |
122 | -- | error codes for the auxiliary functions required by the wrappers | 143 | -- | error codes for the auxiliary functions required by the wrappers |
@@ -151,7 +172,7 @@ check msg f = do | |||
151 | return () | 172 | return () |
152 | 173 | ||
153 | -- | description of GSL error codes | 174 | -- | description of GSL error codes |
154 | foreign import ccall "auxi.h gsl_strerror" gsl_strerror :: CInt -> IO (Ptr CChar) | 175 | foreign import ccall "gsl_strerror" gsl_strerror :: CInt -> IO (Ptr CChar) |
155 | 176 | ||
156 | -- | Error capture and conversion to Maybe | 177 | -- | Error capture and conversion to Maybe |
157 | mbCatch :: IO x -> IO (Maybe x) | 178 | mbCatch :: IO x -> IO (Maybe x) |
diff --git a/lib/Data/Packed/Matrix.hs b/lib/Data/Packed/Matrix.hs index d91a089..4fdd2c6 100644 --- a/lib/Data/Packed/Matrix.hs +++ b/lib/Data/Packed/Matrix.hs | |||
@@ -292,21 +292,6 @@ formatScaled dec t = "E"++show o++"\n" ++ ss | |||
292 | o = floor $ maximum $ map (logBase 10 . abs) $ toList $ flatten t | 292 | o = floor $ maximum $ map (logBase 10 . abs) $ toList $ flatten t |
293 | fmt = '%':show (dec+3) ++ '.':show dec ++"f" | 293 | fmt = '%':show (dec+3) ++ '.':show dec ++"f" |
294 | 294 | ||
295 | {- | Show a vector using a function for showing matrices. | ||
296 | |||
297 | @disp = putStr . vecdisp (dispf 2) | ||
298 | |||
299 | \> disp (linspace 10 (0,1)) | ||
300 | 10 |> 0.00 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.00 | ||
301 | @ | ||
302 | -} | ||
303 | vecdisp :: (Element t) => (Matrix t -> String) -> Vector t -> String | ||
304 | vecdisp f v | ||
305 | = ((show (dim v) ++ " |> ") ++) . (++"\n") | ||
306 | . unwords . lines . tail . dropWhile (not . (`elem` " \n")) | ||
307 | . f . trans . reshape 1 | ||
308 | $ v | ||
309 | |||
310 | -- | Tool to display matrices with latex syntax. | 295 | -- | Tool to display matrices with latex syntax. |
311 | latexFormat :: String -- ^ type of braces: \"matrix\", \"bmatrix\", \"pmatrix\", etc. | 296 | latexFormat :: String -- ^ type of braces: \"matrix\", \"bmatrix\", \"pmatrix\", etc. |
312 | -> String -- ^ Formatted matrix, with elements separated by spaces and newlines | 297 | -> String -- ^ Formatted matrix, with elements separated by spaces and newlines |
diff --git a/lib/Data/Packed/Random.hs b/lib/Data/Packed/Random.hs index 7e0f91f..260e4dc 100644 --- a/lib/Data/Packed/Random.hs +++ b/lib/Data/Packed/Random.hs | |||
@@ -48,7 +48,6 @@ uniformSample :: Int -- ^ seed | |||
48 | uniformSample seed n rgs = m where | 48 | uniformSample seed n rgs = m where |
49 | (as,bs) = unzip rgs | 49 | (as,bs) = unzip rgs |
50 | a = fromList as | 50 | a = fromList as |
51 | b = fromList bs | ||
52 | cs = zipWith subtract as bs | 51 | cs = zipWith subtract as bs |
53 | d = dim a | 52 | d = dim a |
54 | dat = toRows $ reshape n $ randomVector seed Uniform (n*d) | 53 | dat = toRows $ reshape n $ randomVector seed Uniform (n*d) |
diff --git a/lib/Numeric/GSL/ODE.hs b/lib/Numeric/GSL/ODE.hs index f6f11f9..eca06f8 100644 --- a/lib/Numeric/GSL/ODE.hs +++ b/lib/Numeric/GSL/ODE.hs | |||
@@ -64,7 +64,6 @@ odeSolve xdot xi ts = odeSolveV RKf45 hi epsAbs epsRel (l2v xdot) Nothing (fromL | |||
64 | epsAbs = 1.49012e-08 | 64 | epsAbs = 1.49012e-08 |
65 | epsRel = 1.49012e-08 | 65 | epsRel = 1.49012e-08 |
66 | l2v f = \t -> fromList . f t . toList | 66 | l2v f = \t -> fromList . f t . toList |
67 | l2m f = \t -> fromLists . f t . toList | ||
68 | 67 | ||
69 | -- | Evolution of the system with adaptive step-size control. | 68 | -- | Evolution of the system with adaptive step-size control. |
70 | odeSolveV | 69 | odeSolveV |
diff --git a/lib/Numeric/LinearAlgebra/Algorithms.hs b/lib/Numeric/LinearAlgebra/Algorithms.hs index 60f5971..580f4bb 100644 --- a/lib/Numeric/LinearAlgebra/Algorithms.hs +++ b/lib/Numeric/LinearAlgebra/Algorithms.hs | |||
@@ -169,17 +169,17 @@ exactHermitian m = m `equal` ctrans m | |||
169 | 169 | ||
170 | -- | Full singular value decomposition. | 170 | -- | Full singular value decomposition. |
171 | svd :: Field t => Matrix t -> (Matrix t, Vector Double, Matrix t) | 171 | svd :: Field t => Matrix t -> (Matrix t, Vector Double, Matrix t) |
172 | svd = svd' | 172 | svd = {-# SCC "svd" #-} svd' |
173 | 173 | ||
174 | -- | A version of 'svd' which returns only the @min (rows m) (cols m)@ singular vectors of @m@. | 174 | -- | A version of 'svd' which returns only the @min (rows m) (cols m)@ singular vectors of @m@. |
175 | -- | 175 | -- |
176 | -- If @(u,s,v) = thinSVD m@ then @m == u \<> diag s \<> trans v@. | 176 | -- If @(u,s,v) = thinSVD m@ then @m == u \<> diag s \<> trans v@. |
177 | thinSVD :: Field t => Matrix t -> (Matrix t, Vector Double, Matrix t) | 177 | thinSVD :: Field t => Matrix t -> (Matrix t, Vector Double, Matrix t) |
178 | thinSVD = thinSVD' | 178 | thinSVD = {-# SCC "thinSVD" #-} thinSVD' |
179 | 179 | ||
180 | -- | Singular values only. | 180 | -- | Singular values only. |
181 | singularValues :: Field t => Matrix t -> Vector Double | 181 | singularValues :: Field t => Matrix t -> Vector Double |
182 | singularValues = sv' | 182 | singularValues = {-# SCC "singularValues" #-} sv' |
183 | 183 | ||
184 | -- | A version of 'svd' which returns an appropriate diagonal matrix with the singular values. | 184 | -- | A version of 'svd' which returns an appropriate diagonal matrix with the singular values. |
185 | -- | 185 | -- |
@@ -229,50 +229,50 @@ economy svdFun m = (u', subVector 0 d s, v') where | |||
229 | -------------------------------------------------------------- | 229 | -------------------------------------------------------------- |
230 | 230 | ||
231 | -- | Obtains the LU decomposition of a matrix in a compact data structure suitable for 'luSolve'. | 231 | -- | Obtains the LU decomposition of a matrix in a compact data structure suitable for 'luSolve'. |
232 | luPacked :: Field t => Matrix t -> (Matrix t, [Int]) | 232 | luPacked :: Field t => Matrix t -> (Matrix t, [Int]) |
233 | luPacked = luPacked' | 233 | luPacked = {-# SCC "luPacked" #-} luPacked' |
234 | 234 | ||
235 | -- | Solution of a linear system (for several right hand sides) from the precomputed LU factorization obtained by 'luPacked'. | 235 | -- | Solution of a linear system (for several right hand sides) from the precomputed LU factorization obtained by 'luPacked'. |
236 | luSolve :: Field t => (Matrix t, [Int]) -> Matrix t -> Matrix t | 236 | luSolve :: Field t => (Matrix t, [Int]) -> Matrix t -> Matrix t |
237 | luSolve = luSolve' | 237 | luSolve = {-# SCC "luSolve" #-} luSolve' |
238 | 238 | ||
239 | -- | Solve a linear system (for square coefficient matrix and several right-hand sides) using the LU decomposition. For underconstrained or overconstrained systems use 'linearSolveLS' or 'linearSolveSVD'. | 239 | -- | Solve a linear system (for square coefficient matrix and several right-hand sides) using the LU decomposition. For underconstrained or overconstrained systems use 'linearSolveLS' or 'linearSolveSVD'. |
240 | -- It is similar to 'luSolve' . 'luPacked', but @linearSolve@ raises an error if called on a singular system. | 240 | -- It is similar to 'luSolve' . 'luPacked', but @linearSolve@ raises an error if called on a singular system. |
241 | linearSolve :: Field t => Matrix t -> Matrix t -> Matrix t | 241 | linearSolve :: Field t => Matrix t -> Matrix t -> Matrix t |
242 | linearSolve = linearSolve' | 242 | linearSolve = {-# SCC "linearSolve" #-} linearSolve' |
243 | 243 | ||
244 | -- | Solve a symmetric or Hermitian positive definite linear system using a precomputed Cholesky decomposition obtained by 'chol'. | 244 | -- | Solve a symmetric or Hermitian positive definite linear system using a precomputed Cholesky decomposition obtained by 'chol'. |
245 | cholSolve :: Field t => Matrix t -> Matrix t -> Matrix t | 245 | cholSolve :: Field t => Matrix t -> Matrix t -> Matrix t |
246 | cholSolve = cholSolve' | 246 | cholSolve = {-# SCC "cholSolve" #-} cholSolve' |
247 | 247 | ||
248 | -- | Minimum norm solution of a general linear least squares problem Ax=B using the SVD. Admits rank-deficient systems but it is slower than 'linearSolveLS'. The effective rank of A is determined by treating as zero those singular valures which are less than 'eps' times the largest singular value. | 248 | -- | Minimum norm solution of a general linear least squares problem Ax=B using the SVD. Admits rank-deficient systems but it is slower than 'linearSolveLS'. The effective rank of A is determined by treating as zero those singular valures which are less than 'eps' times the largest singular value. |
249 | linearSolveSVD :: Field t => Matrix t -> Matrix t -> Matrix t | 249 | linearSolveSVD :: Field t => Matrix t -> Matrix t -> Matrix t |
250 | linearSolveSVD = linearSolveSVD' | 250 | linearSolveSVD = {-# SCC "linearSolveSVD" #-} linearSolveSVD' |
251 | 251 | ||
252 | 252 | ||
253 | -- | Least squared error solution of an overconstrained linear system, or the minimum norm solution of an underconstrained system. For rank-deficient systems use 'linearSolveSVD'. | 253 | -- | Least squared error solution of an overconstrained linear system, or the minimum norm solution of an underconstrained system. For rank-deficient systems use 'linearSolveSVD'. |
254 | linearSolveLS :: Field t => Matrix t -> Matrix t -> Matrix t | 254 | linearSolveLS :: Field t => Matrix t -> Matrix t -> Matrix t |
255 | linearSolveLS = linearSolveLS' | 255 | linearSolveLS = {-# SCC "linearSolveLS" #-} linearSolveLS' |
256 | 256 | ||
257 | -------------------------------------------------------------- | 257 | -------------------------------------------------------------- |
258 | 258 | ||
259 | -- | Eigenvalues and eigenvectors of a general square matrix. | 259 | -- | Eigenvalues and eigenvectors of a general square matrix. |
260 | -- | 260 | -- |
261 | -- If @(s,v) = eig m@ then @m \<> v == v \<> diag s@ | 261 | -- If @(s,v) = eig m@ then @m \<> v == v \<> diag s@ |
262 | eig :: Field t => Matrix t -> (Vector (Complex Double), Matrix (Complex Double)) | 262 | eig :: Field t => Matrix t -> (Vector (Complex Double), Matrix (Complex Double)) |
263 | eig = eig' | 263 | eig = {-# SCC "eig" #-} eig' |
264 | 264 | ||
265 | -- | Eigenvalues of a general square matrix. | 265 | -- | Eigenvalues of a general square matrix. |
266 | eigenvalues :: Field t => Matrix t -> Vector (Complex Double) | 266 | eigenvalues :: Field t => Matrix t -> Vector (Complex Double) |
267 | eigenvalues = eigOnly | 267 | eigenvalues = {-# SCC "eigenvalues" #-} eigOnly |
268 | 268 | ||
269 | -- | Similar to 'eigSH' without checking that the input matrix is hermitian or symmetric. It works with the upper triangular part. | 269 | -- | Similar to 'eigSH' without checking that the input matrix is hermitian or symmetric. It works with the upper triangular part. |
270 | eigSH' :: Field t => Matrix t -> (Vector Double, Matrix t) | 270 | eigSH' :: Field t => Matrix t -> (Vector Double, Matrix t) |
271 | eigSH' = eigSH'' | 271 | eigSH' = {-# SCC "eigSH'" #-} eigSH'' |
272 | 272 | ||
273 | -- | Similar to 'eigenvaluesSH' without checking that the input matrix is hermitian or symmetric. It works with the upper triangular part. | 273 | -- | Similar to 'eigenvaluesSH' without checking that the input matrix is hermitian or symmetric. It works with the upper triangular part. |
274 | eigenvaluesSH' :: Field t => Matrix t -> Vector Double | 274 | eigenvaluesSH' :: Field t => Matrix t -> Vector Double |
275 | eigenvaluesSH' = eigOnlySH | 275 | eigenvaluesSH' = {-# SCC "eigenvaluesSH'" #-} eigOnlySH |
276 | 276 | ||
277 | -- | Eigenvalues and Eigenvectors of a complex hermitian or real symmetric matrix. | 277 | -- | Eigenvalues and Eigenvectors of a complex hermitian or real symmetric matrix. |
278 | -- | 278 | -- |
@@ -291,14 +291,14 @@ eigenvaluesSH m | exactHermitian m = eigenvaluesSH' m | |||
291 | -- | QR factorization. | 291 | -- | QR factorization. |
292 | -- | 292 | -- |
293 | -- If @(q,r) = qr m@ then @m == q \<> r@, where q is unitary and r is upper triangular. | 293 | -- If @(q,r) = qr m@ then @m == q \<> r@, where q is unitary and r is upper triangular. |
294 | qr :: Field t => Matrix t -> (Matrix t, Matrix t) | 294 | qr :: Field t => Matrix t -> (Matrix t, Matrix t) |
295 | qr = qr' | 295 | qr = {-# SCC "qr" #-} qr' |
296 | 296 | ||
297 | -- | RQ factorization. | 297 | -- | RQ factorization. |
298 | -- | 298 | -- |
299 | -- If @(r,q) = rq m@ then @m == r \<> q@, where q is unitary and r is upper triangular. | 299 | -- If @(r,q) = rq m@ then @m == r \<> q@, where q is unitary and r is upper triangular. |
300 | rq :: Field t => Matrix t -> (Matrix t, Matrix t) | 300 | rq :: Field t => Matrix t -> (Matrix t, Matrix t) |
301 | rq m = (r,q) where | 301 | rq m = {-# SCC "rq" #-} (r,q) where |
302 | (q',r') = qr $ trans $ rev1 m | 302 | (q',r') = qr $ trans $ rev1 m |
303 | r = rev2 (trans r') | 303 | r = rev2 (trans r') |
304 | q = rev2 (trans q') | 304 | q = rev2 (trans q') |
@@ -474,8 +474,6 @@ nullspaceSVD :: Field t | |||
474 | -> (Vector Double, Matrix t) -- ^ 'rightSV' of m | 474 | -> (Vector Double, Matrix t) -- ^ 'rightSV' of m |
475 | -> [Vector t] -- ^ list of unitary vectors spanning the nullspace | 475 | -> [Vector t] -- ^ list of unitary vectors spanning the nullspace |
476 | nullspaceSVD hint a (s,v) = vs where | 476 | nullspaceSVD hint a (s,v) = vs where |
477 | r = rows a | ||
478 | c = cols a | ||
479 | tol = case hint of | 477 | tol = case hint of |
480 | Left t -> t | 478 | Left t -> t |
481 | _ -> eps | 479 | _ -> eps |
@@ -546,7 +544,7 @@ zt k v = join [subVector 0 (dim v - k) v, constant 0 k] | |||
546 | 544 | ||
547 | 545 | ||
548 | unpackQR :: (Field t) => (Matrix t, Vector t) -> (Matrix t, Matrix t) | 546 | unpackQR :: (Field t) => (Matrix t, Vector t) -> (Matrix t, Matrix t) |
549 | unpackQR (pq, tau) = (q,r) | 547 | unpackQR (pq, tau) = {-# SCC "unpackQR" #-} (q,r) |
550 | where cs = toColumns pq | 548 | where cs = toColumns pq |
551 | m = rows pq | 549 | m = rows pq |
552 | n = cols pq | 550 | n = cols pq |
diff --git a/lib/Numeric/LinearAlgebra/LAPACK.hs b/lib/Numeric/LinearAlgebra/LAPACK.hs index 539ffb9..f5af8be 100644 --- a/lib/Numeric/LinearAlgebra/LAPACK.hs +++ b/lib/Numeric/LinearAlgebra/LAPACK.hs | |||
@@ -237,7 +237,6 @@ eigR m = (s', v'') | |||
237 | s' = fixeig1 s | 237 | s' = fixeig1 s |
238 | v' = toRows $ trans v | 238 | v' = toRows $ trans v |
239 | v'' = fromColumns $ fixeig (toList s') v' | 239 | v'' = fromColumns $ fixeig (toList s') v' |
240 | r = rows m | ||
241 | 240 | ||
242 | eigRaux :: Matrix Double -> (Vector (Complex Double), Matrix Double) | 241 | eigRaux :: Matrix Double -> (Vector (Complex Double), Matrix Double) |
243 | eigRaux m = unsafePerformIO $ do | 242 | eigRaux m = unsafePerformIO $ do |
diff --git a/lib/Numeric/LinearAlgebra/Tests/Properties.hs b/lib/Numeric/LinearAlgebra/Tests/Properties.hs index 618094b..d29e19a 100644 --- a/lib/Numeric/LinearAlgebra/Tests/Properties.hs +++ b/lib/Numeric/LinearAlgebra/Tests/Properties.hs | |||
@@ -185,7 +185,7 @@ svdProp6b m = s |~| s' && v |~| v' && s |~| s'' && u |~| u' | |||
185 | svdProp7 m = s |~| s' && u |~| u' && v |~| v' && s |~| s''' | 185 | svdProp7 m = s |~| s' && u |~| u' && v |~| v' && s |~| s''' |
186 | where (u,s,v) = svd m | 186 | where (u,s,v) = svd m |
187 | (s',v') = rightSV m | 187 | (s',v') = rightSV m |
188 | (u',s'') = leftSV m | 188 | (u',_s'') = leftSV m |
189 | s''' = singularValues m | 189 | s''' = singularValues m |
190 | 190 | ||
191 | ------------------------------------------------------------------ | 191 | ------------------------------------------------------------------ |