summaryrefslogtreecommitdiff
path: root/examples/benchmarks.hs
blob: d19084a1e295a366ccdd75c8fdb429e830cdaadb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
{-# OPTIONS -fbang-patterns #-}

-- compile as:
-- ghc --make -O2 -optc-O2 -fvia-C benchmarks.hs
-- ghc --make -O benchmarks.hs

import Numeric.LinearAlgebra
import System.Time
import System.CPUTime
import Text.Printf
import Data.List(foldl1')


time act = do
    t0 <- getCPUTime
    act
    t1 <- getCPUTime
    printf "%.3f s CPU\n" $ (fromIntegral (t1 - t0) / (10^12 :: Double)) :: IO ()

--------------------------------------------------------------------------------

main = sequence_ [bench1,bench2,bench3,bench4]

w :: Vector Double
w = constant 1 30000000
w2 = 1 * w

bench1 = do
    putStrLn "Sum of a vector with 30M doubles:"
    print$ vectorMax (w+w2) -- evaluate it
    time $ printf "     BLAS: %.2f: " $ sumVB w
    time $ printf "  Haskell: %.2f: " $ sumVH w
    time $ printf "     BLAS: %.2f: " $ sumVB w
    time $ printf "  Haskell: %.2f: " $ sumVH w
    --time $ printf "   innerH: %.2f: " $ innerH w w2

sumVB v = constant 1 (dim v) <.> v

sumVH v = go (d - 1) 0
     where
       d = dim v
       go :: Int -> Double -> Double
       go 0 s = s + (v @> 0)
       go !j !s = go (j - 1) (s + (v @> j))

innerH u v = go (d - 1) 0
     where
       d = dim u
       go :: Int -> Double -> Double
       go 0 s = s + (u @> 0) * (v @> 0)
       go !j !s = go (j - 1) (s + (u @> j) * (v @> j))

--------------------------------------------------------------------------------

bench2 = do
    putStrLn "-------------------------------------------------------"
    putStrLn "Multiplication of 1M different 3x3 matrices:"
--     putStrLn "from [[]]"
--     time $ print $ fun (10^6) rot'
--     putStrLn "from []"
    time $ print $ manymult (10^6) rot
    print $ cos (10^6/2)


rot' :: Double -> Matrix Double
rot' a = matrix [[ c,0,s],
                 [ 0,1,0],
                 [-s,0,c]]
    where c = cos a
          s = sin a
          matrix = fromLists

rot :: Double -> Matrix Double
rot a = (3><3) [ c,0,s
               , 0,1,0
               ,-s,0,c ]
    where c = cos a
          s = sin a

manymult n r = foldl1' (<>) (map r angles)
    where angles = toList $ linspace n (0,1)
          -- angles = map (k*) [0..n']
          -- n' = fromIntegral n - 1
          -- k  = recip n'

--------------------------------------------------------------------------------

bench3 = do
    putStrLn "-------------------------------------------------------"
    putStrLn "foldVector"
    let v = flatten $ ident 500 :: Vector Double
    print $ vectorMax v  -- evaluate it
    let getPos k s = if k `mod` 500 < 200 && v@>k > 0 then k:s else s
    putStrLn "indices extraction, dim=0.25M:"
    time $ print $ (`divMod` 500) $ maximum $ foldLoop getPos [] (dim v)
    putStrLn "sum, dim=30M:"
    --time $ print $ foldLoop (\k s -> w@>k + s) 0.0 (dim w)
    time $ print $ foldVector (\k v s -> v k + s) 0.0 w
    putStrLn "sum, dim=0.25M:"
    --time $ print $ foldVector (\k v s -> v k + s) 0.0 v
    time $ print $ foldLoop (\k s -> v@>k + s) 0.0 (dim v)

-- foldVector is slower if it is used in two places. (!?)
-- this does not happen with foldLoop

foldLoop f s d = go (d - 1) s
     where
       go 0 s = f (0::Int) s
       go !j !s = go (j - 1) (f j s)

foldVector f s v = foldLoop g s (dim v)
    where g !k !s = f k (v@>) s

--------------------------------------------------------------------------------

bench4 = do
    putStrLn "-------------------------------------------------------"
    putStrLn "1000x1000 inverse"
    let a = ident 1000 :: Matrix Double
    let b = 2*a
    print $ vectorMax $ flatten (a+b) -- evaluate it
    time $ print $ vectorMax $ flatten $ linearSolve a b