1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
import Numeric.LinearAlgebra
import Graphics.Plot
vector l = fromList l :: Vector Double
matrix ls = fromLists ls :: Matrix Double
diagl = diag . vector
f = matrix [[1,0,0,0],
[1,1,0,0],
[0,0,1,0],
[0,0,0,1]]
h = matrix [[0,-1,1,0],
[0,-1,0,1]]
q = diagl [1,1,0,0]
r = diagl [2,2]
s0 = State (vector [0, 0, 10, -10]) (diagl [10,0, 100, 100])
data System = System {kF, kH, kQ, kR :: Matrix Double}
data State = State {sX :: Vector Double , sP :: Matrix Double}
type Measurement = Vector Double
kalman :: System -> State -> Measurement -> State
kalman (System f h q r) (State x p) z = State x' p' where
px = f <> x -- prediction
pq = f <> p <> trans f -- its covariance
y = z - h <> px -- residue
cy = h <> pq <> trans h + r -- its covariance
k = pq <> trans h <> inv cy -- kalman gain
x' = px + k <> y -- new state
p' = (ident (dim x) - k <> h) <> pq -- its covariance
sys = System f h q r
zs = [vector [15-k,-20-k] | k <- [0..]]
xs = s0 : zipWith (kalman sys) xs zs
des = map (sqrt.takeDiag.sP) xs
evolution n (xs,des) =
vector [1.. fromIntegral n]:(toColumns $ fromRows $ take n (zipWith (-) (map sX xs) des)) ++
(toColumns $ fromRows $ take n (zipWith (+) (map sX xs) des))
main = do
print $ fromRows $ take 10 (map sX xs)
mapM_ (print . sP) $ take 10 xs
mplot (evolution 20 (xs,des))
--(<>) = multiply
|