1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
--
-- QuickCheck tests
--
-----------------------------------------------------------------------------
import Data.Packed.Internal
import Data.Packed.Vector
import Data.Packed.Matrix
import Data.Packed.Internal.Matrix
import LAPACK
import Test.QuickCheck
import Complex
{-
-- Bravo por quickCheck!
pinvProp1 tol m = (rank m == cols m) ==> pinv m <> m ~~ ident (cols m)
where infix 2 ~~
(~~) = approxEqual tol
pinvProp2 tol m = 0 < r && r <= c ==> (r==c) `trivial` (m <> pinv m <> m ~~ m)
where r = rank m
c = cols m
infix 2 ~~
(~~) = approxEqual tol
nullspaceProp tol m = cr > 0 ==> m <> nt ~~ zeros
where nt = trans (nullspace m)
cr = corank m
r = rows m
zeros = create [r,cr] $ replicate (r*cr) 0
-}
ac = (2><3) [1 .. 6::Double]
bc = (3><4) [7 .. 18::Double]
mz = (2 >< 3) [1,2,3,4,5,6:+(1::Double)]
af = (2>|<3) [1,4,2,5,3,6::Double]
bf = (3>|<4) [7,11,15,8,12,16,9,13,17,10,14,18::Double]
a |=| b = rows a == rows b &&
cols a == cols b &&
toList (cdat a) == toList (cdat b) &&
toList (fdat a) == toList (fdat b)
aprox fun a b = rows a == rows b &&
cols a == cols b &&
eps > aproxL fun (toList (t a)) (toList (t b))
where t = if (order a == RowMajor) `xor` isTrans a then cdat else fdat
aproxL fun v1 v2 = sum (zipWith (\a b-> fun (a-b)) v1 v2) / fromIntegral (length v1)
(|~|) = aprox abs
(|~~|) = aprox magnitude
v1 ~~ v2 = reshape 1 v1 |~~| reshape 1 v2
eps = 1E-8::Double
asFortran m = (rows m >|< cols m) $ toList (fdat m)
asC m = (rows m >< cols m) $ toList (cdat m)
mulC a b = multiply RowMajor a b
mulF a b = multiply ColumnMajor a b
cc = mulC ac bf
cf = mulF af bc
r = mulC cc (trans cf)
rd = (2><2)
[ 27736.0, 65356.0
, 65356.0, 154006.0 ::Double]
instance (Arbitrary a, RealFloat a) => Arbitrary (Complex a) where
arbitrary = do
r <- arbitrary
i <- arbitrary
return (r:+i)
coarbitrary = undefined
instance (Field a, Arbitrary a) => Arbitrary (Matrix a) where
arbitrary = do --m <- sized $ \max -> choose (1,1+3*max)
m <- choose (1,10)
n <- choose (1,10)
l <- vector (m*n)
ctype <- arbitrary
let h = if ctype then (m><n) else (m>|<n)
trMode <- arbitrary
let tr = if trMode then trans else id
return $ tr (h l)
coarbitrary = undefined
data PairM a = PairM (Matrix a) (Matrix a) deriving Show
instance (Num a, Field a, Arbitrary a) => Arbitrary (PairM a) where
arbitrary = do
a <- choose (1,10)
b <- choose (1,10)
c <- choose (1,10)
l1 <- vector (a*b)
l2 <- vector (b*c)
return $ PairM ((a><b) (map fromIntegral (l1::[Int]))) ((b><c) (map fromIntegral (l2::[Int])))
--return $ PairM ((a><b) l1) ((b><c) l2)
coarbitrary = undefined
data SqM a = SqM (Matrix a) deriving Show
instance (Field a, Arbitrary a) => Arbitrary (SqM a) where
arbitrary = do
n <- choose (1,10)
l <- vector (n*n)
return $ SqM $ (n><n) l
coarbitrary = undefined
data Sym a = Sym (Matrix a) deriving Show
instance (Field a, Arbitrary a, Num a) => Arbitrary (Sym a) where
arbitrary = do
SqM m <- arbitrary
return $ Sym (m `addM` trans m)
coarbitrary = undefined
data Her = Her (Matrix (Complex Double)) deriving Show
instance {-(Field a, Arbitrary a, Num a) =>-} Arbitrary Her where
arbitrary = do
SqM m <- arbitrary
return $ Her (m `addM` (liftMatrix conj) (trans m))
coarbitrary = undefined
data PairSM a = PairSM (Matrix a) (Matrix a) deriving Show
instance (Num a, Field a, Arbitrary a) => Arbitrary (PairSM a) where
arbitrary = do
a <- choose (1,10)
c <- choose (1,10)
l1 <- vector (a*a)
l2 <- vector (a*c)
return $ PairSM ((a><a) (map fromIntegral (l1::[Int]))) ((a><c) (map fromIntegral (l2::[Int])))
--return $ PairSM ((a><a) l1) ((a><c) l2)
coarbitrary = undefined
addM m1 m2 = liftMatrix2 addV m1 m2
addV v1 v2 = fromList $ zipWith (+) (toList v1) (toList v2)
type BaseType = Double
svdTestR fun prod m = u <> s <> trans v |~| m
&& u <> trans u |~| ident (rows m)
&& v <> trans v |~| ident (cols m)
where (u,s,v) = fun m
(<>) = prod
svdTestC prod m = u <> s' <> (trans v) |~~| m
&& u <> (liftMatrix conj) (trans u) |~~| ident (rows m)
&& v <> (liftMatrix conj) (trans v) |~~| ident (cols m)
where (u,s,v) = svdC m
(<>) = prod
s' = liftMatrix comp s
eigTestC prod (SqM m) = (m <> v) |~~| (v <> diag s)
&& takeDiag ((liftMatrix conj (trans v)) <> v) ~~ constant (rows m) 1 --normalized
where (s,v) = eigC m
(<>) = prod
eigTestR prod (SqM m) = (liftMatrix comp m <> v) |~~| (v <> diag s)
-- && takeDiag ((liftMatrix conj (trans v)) <> v) ~~ constant (rows m) 1 --normalized ???
where (s,v) = eigR m
(<>) = prod
eigTestS prod (Sym m) = (m <> v) |~| (v <> diag s)
&& v <> trans v |~| ident (cols m)
where (s,v) = eigS m
(<>) = prod
eigTestH prod (Her m) = (m <> v) |~~| (v <> diag (comp s))
&& v <> (liftMatrix conj) (trans v) |~~| ident (cols m)
where (s,v) = eigH m
(<>) = prod
linearSolveSQTest fun eqfun singu prod (PairSM a b) = singu a || (a <> fun a b) ==== b
where (<>) = prod
(====) = eqfun
prec = 1E-15
singular fun m = s1 < prec || s2/s1 < prec
where (_,ss,v) = fun m
s = toList ss
s1 = maximum s
s2 = minimum s
{-
invTest msg m = do
assertBool msg $ m <> inv m =~= ident (rows m)
invComplexTest msg m = do
assertBool msg $ m <> invC m =~= identC (rows m)
invC m = linearSolveC m (identC (rows m))
identC n = toComplex(ident n, (0::Double) <>ident n)
-}
--------------------------------------------------------------------
pinvTest f feq m = (m <> f m <> m) `feq` m
where (<>) = mulF
pinvR m = linearSolveLSR m (ident (rows m))
pinvC m = linearSolveLSC m (ident (rows m))
pinvSVDR m = linearSolveSVDR Nothing m (ident (rows m))
pinvSVDC m = linearSolveSVDC Nothing m (ident (rows m))
main = do
putStrLn "--------- general -----"
quickCheck (\(Sym m) -> m |=| (trans m:: Matrix BaseType))
quickCheck $ \l -> null l || (toList . fromList) l == (l :: [BaseType])
quickCheck $ \m -> m |=| asC (m :: Matrix BaseType)
quickCheck $ \m -> m |=| asFortran (m :: Matrix BaseType)
quickCheck $ \m -> m |=| (asC . asFortran) (m :: Matrix BaseType)
putStrLn "--------- MULTIPLY ----"
quickCheck $ \(PairM m1 m2) -> mulC m1 m2 |=| mulF m1 (m2 :: Matrix BaseType)
quickCheck $ \(PairM m1 m2) -> mulC m1 m2 |=| trans (mulF (trans m2) (trans m1 :: Matrix BaseType))
quickCheck $ \(PairM m1 m2) -> mulC m1 m2 |=| multiplyG m1 (m2 :: Matrix BaseType)
putStrLn "--------- SVD ---------"
quickCheck (svdTestR svdR mulC)
quickCheck (svdTestR svdR mulF)
quickCheck (svdTestR svdRdd mulC)
quickCheck (svdTestR svdRdd mulF)
quickCheck (svdTestC mulC)
quickCheck (svdTestC mulF)
putStrLn "--------- EIG ---------"
quickCheck (eigTestC mulC)
quickCheck (eigTestC mulF)
quickCheck (eigTestR mulC)
quickCheck (eigTestR mulF)
quickCheck (eigTestS mulC)
quickCheck (eigTestS mulF)
quickCheck (eigTestH mulC)
quickCheck (eigTestH mulF)
putStrLn "--------- SOLVE ---------"
quickCheck (linearSolveSQTest linearSolveR (|~|) (singular svdR') mulC)
quickCheck (linearSolveSQTest linearSolveC (|~~|) (singular svdC') mulF)
quickCheck (pinvTest pinvR (|~|))
quickCheck (pinvTest pinvC (|~~|))
quickCheck (pinvTest pinvSVDR (|~|))
quickCheck (pinvTest pinvSVDC (|~~|))
kk = (2><2)
[ 1.0, 0.0
, -1.5, 1.0 ::Double]
|