summaryrefslogtreecommitdiff
path: root/examples/tests.hs
blob: f167b92fc5e0b7177f4835b1b00c80178998249c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
--
-- QuickCheck tests
--

-----------------------------------------------------------------------------

import Data.Packed.Internal.Vector
import Data.Packed.Internal.Matrix
import LAPACK
import Test.QuickCheck
import Complex

{-
-- Bravo por quickCheck!    

pinvProp1 tol m = (rank m == cols m) ==> pinv m <> m  ~~ ident (cols m)
    where infix 2 ~~
          (~~) = approxEqual tol 

pinvProp2 tol m = 0 < r && r <= c ==> (r==c) `trivial` (m <> pinv m <> m  ~~ m)
    where r = rank m
          c = cols m
          infix 2 ~~
          (~~) = approxEqual tol 
        
nullspaceProp tol m = cr > 0 ==> m <> nt ~~ zeros
    where nt    = trans (nullspace m)
          cr    = corank m
          r     = rows m
          zeros = create [r,cr] $ replicate (r*cr) 0  

-}

r >< c = f where
    f l | dim v == r*c = matrixFromVector RowMajor c v
        | otherwise    = error $ "inconsistent list size = "
                                 ++show (dim v) ++"in ("++show r++"><"++show c++")"
        where v = fromList l

r >|< c = f where
    f l | dim v == r*c = matrixFromVector ColumnMajor c v
        | otherwise    = error $ "inconsistent list size = "
                                 ++show (dim v) ++"in ("++show r++"><"++show c++")"
        where v = fromList l

ac = (2><3) [1 .. 6::Double]
bc = (3><4) [7 .. 18::Double]

mz = (2 >< 3) [1,2,3,4,5,6:+(1::Double)]

af = (2>|<3) [1,4,2,5,3,6::Double]
bf = (3>|<4) [7,11,15,8,12,16,9,13,17,10,14,18::Double]

a |=| b = rows a == rows b &&
          cols a == cols b &&
          toList (cdat a) == toList (cdat b) &&
          toList (fdat a) == toList (fdat b)

aprox fun a b = rows a == rows b &&
          cols a == cols b &&
          eps > aproxL fun (toList (t a)) (toList (t b))
    where t = if (order a == RowMajor) `xor` isTrans a then cdat else fdat

aproxL fun v1 v2 = sum (zipWith (\a b-> fun (a-b)) v1 v2) / fromIntegral (length v1)

(|~|) = aprox abs
(|~~|) = aprox magnitude

eps = 1E-8::Double

asFortran m = (rows m >|< cols m) $ toList (fdat m)
asC m = (rows m >< cols m) $ toList (cdat m)

mulC a b = multiply RowMajor a b
mulF a b = multiply ColumnMajor a b

cc = mulC ac bf
cf = mulF af bc

r = mulC cc (trans cf)

ident n = diag (constant n 1)

rd = (2><2)
 [  43492.0,  50572.0
 , 102550.0, 119242.0 :: Double]

instance (Arbitrary a, RealFloat a) => Arbitrary (Complex a) where
    arbitrary = do
        r <- arbitrary
        i <- arbitrary
        return (r:+i)
    coarbitrary = undefined

instance (Field a, Arbitrary a) => Arbitrary (Matrix a) where 
   arbitrary = do --m <- sized $ \max -> choose (1,1+3*max)
                  m <- choose (1,10)
                  n <- choose (1,10)
                  l <- vector (m*n)
                  ctype <- arbitrary
                  let h = if ctype then (m><n) else (m>|<n)
                  trMode <- arbitrary
                  let tr = if trMode then trans else id
                  return $ tr (h l)
   coarbitrary = undefined

data PairM a = PairM (Matrix a) (Matrix a) deriving Show
instance (Num a, Field a, Arbitrary a) => Arbitrary (PairM a) where
    arbitrary = do
        a <- choose (1,10)
        b <- choose (1,10)
        c <- choose (1,10)
        l1 <- vector (a*b)
        l2 <- vector (b*c)
        return $ PairM ((a><b) (map fromIntegral (l1::[Int]))) ((b><c) (map fromIntegral (l2::[Int])))
        --return $ PairM ((a><b) l1) ((b><c) l2)
    coarbitrary = undefined

type BaseType = Double


svdTestR fun prod m = u <> s <> trans v |~| m
                  && u <> trans u |~| ident (rows m)
                  && v <> trans v |~| ident (cols m)
    where (u,s,v) = fun m
          (<>) = prod


svdTestC fun prod m = u <> s' <> (trans v) |~~| m
                  && u <> (liftMatrix conj) (trans u) |~~| ident (rows m)
                  && v <> (liftMatrix conj) (trans v) |~~| ident (cols m)
    where (u,s,v) = fun m
          (<>) = prod
          s' = liftMatrix comp s

comp v = toComplex (v,constant (dim v) 0)

main = do
    quickCheck $ \l -> null l || (toList . fromList) l == (l :: [BaseType])
    quickCheck $ \m -> m |=| asC (m :: Matrix BaseType)
    quickCheck $ \m -> m |=| asFortran (m :: Matrix BaseType)
    quickCheck $ \m -> m |=| (asC . asFortran) (m :: Matrix BaseType)
    quickCheck $ \(PairM m1 m2) -> mulC m1 m2 |=| mulF m1 (m2 :: Matrix BaseType)
    quickCheck $ \(PairM m1 m2) -> mulC m1 m2 |=| trans (mulF (trans m2) (trans m1 :: Matrix BaseType))
    quickCheck $ \(PairM m1 m2) -> mulC m1 m2 |=| multiplyG m1 (m2 :: Matrix BaseType)
    quickCheck (svdTestR svdR mulC)
    quickCheck (svdTestR svdR mulF)
    quickCheck (svdTestC svdC mulC)
    quickCheck (svdTestC svdC mulF)