1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
{-# OPTIONS_GHC -fglasgow-exts -fallow-undecidable-instances #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Packed.Internal.Matrix
-- Copyright : (c) Alberto Ruiz 2007
-- License : GPL-style
--
-- Maintainer : Alberto Ruiz <aruiz@um.es>
-- Stability : provisional
-- Portability : portable (uses FFI)
--
-- Fundamental types
--
-----------------------------------------------------------------------------
module Data.Packed.Internal.Matrix where
import Data.Packed.Internal.Vector
import Foreign hiding (xor)
import Complex
import Control.Monad(when)
import Debug.Trace
import Data.List(transpose,intersperse)
import Data.Typeable
import Data.Maybe(fromJust)
debug x = trace (show x) x
data MatrixOrder = RowMajor | ColumnMajor deriving (Show,Eq)
-- | 2D array
data Matrix t = M { rows :: Int
, cols :: Int
, dat :: Vector t
, tdat :: Vector t
, isTrans :: Bool
, order :: MatrixOrder
} deriving Typeable
xor a b = a && not b || b && not a
fortran m = order m == ColumnMajor
cdat m = if fortran m `xor` isTrans m then tdat m else dat m
fdat m = if fortran m `xor` isTrans m then dat m else tdat m
trans m = m { rows = cols m
, cols = rows m
, isTrans = not (isTrans m)
}
type Mt t s = Int -> Int -> Ptr t -> s
infixr 6 ::>
type t ::> s = Mt t s
mat d m f = f (rows m) (cols m) (ptr (d m))
instance (Show a, Storable a) => (Show (Matrix a)) where
show m = (sizes++) . dsp . map (map show) . toLists $ m
where sizes = "("++show (rows m)++"><"++show (cols m)++")\n"
partit :: Int -> [a] -> [[a]]
partit _ [] = []
partit n l = take n l : partit n (drop n l)
toLists m | fortran m = transpose $ partit (rows m) . toList . dat $ m
| otherwise = partit (cols m) . toList . dat $ m
dsp as = (++" ]") . (" ["++) . init . drop 2 . unlines . map (" , "++) . map unwords' $ transpose mtp
where
mt = transpose as
longs = map (maximum . map length) mt
mtp = zipWith (\a b -> map (pad a) b) longs mt
pad n str = replicate (n - length str) ' ' ++ str
unwords' = concat . intersperse ", "
matrixFromVector RowMajor c v =
M { rows = r
, cols = c
, dat = v
, tdat = transdata c v r
, order = RowMajor
, isTrans = False
} where r = dim v `div` c -- TODO check mod=0
matrixFromVector ColumnMajor c v =
M { rows = r
, cols = c
, dat = v
, tdat = transdata r v c
, order = ColumnMajor
, isTrans = False
} where r = dim v `div` c -- TODO check mod=0
createMatrix order r c = do
p <- createVector (r*c)
return (matrixFromVector order c p)
transdataG :: Storable a => Int -> Vector a -> Int -> Vector a
transdataG c1 d c2 = fromList . concat . transpose . partit c1 . toList $ d
transdataR :: Int -> Vector Double -> Int -> Vector Double
transdataR = transdataAux ctransR
transdataC :: Int -> Vector (Complex Double) -> Int -> Vector (Complex Double)
transdataC = transdataAux ctransC
transdataAux fun c1 d c2 = unsafePerformIO $ do
v <- createVector (dim d)
let r1 = dim d `div` c1
r2 = dim d `div` c2
fun r1 c1 (ptr d) r2 c2 (ptr v) // check "transdataAux" [d]
--putStrLn "---> transdataAux"
return v
foreign import ccall safe "aux.h transR"
ctransR :: Double ::> Double ::> IO Int
foreign import ccall safe "aux.h transC"
ctransC :: Complex Double ::> Complex Double ::> IO Int
transdata :: Field a => Int -> Vector a -> Int -> Vector a
transdata c1 d c2 | isReal baseOf d = scast $ transdataR c1 (scast d) c2
| isComp baseOf d = scast $ transdataC c1 (scast d) c2
| otherwise = transdataG c1 d c2
--transdata :: Storable a => Int -> Vector a -> Int -> Vector a
--transdata = transdataG
--{-# RULES "transdataR" transdata=transdataR #-}
--{-# RULES "transdataC" transdata=transdataC #-}
-- | extracts the rows of a matrix as a list of vectors
toRows :: Storable t => Matrix t -> [Vector t]
toRows m = toRows' 0 where
v = cdat m
r = rows m
c = cols m
toRows' k | k == r*c = []
| otherwise = subVector k c v : toRows' (k+c)
------------------------------------------------------------------
dotL a b = sum (zipWith (*) a b)
multiplyL a b = [[dotL x y | y <- transpose b] | x <- a]
transL m = matrixFromVector RowMajor (rows m) $ transdataG (cols m) (cdat m) (rows m)
multiplyG a b = matrixFromVector RowMajor (cols b) $ fromList $ concat $ multiplyL (toLists a) (toLists b)
------------------------------------------------------------------
gmatC m f | fortran m =
if (isTrans m)
then f 0 (rows m) (cols m) (ptr (dat m))
else f 1 (cols m) (rows m) (ptr (dat m))
| otherwise =
if isTrans m
then f 1 (cols m) (rows m) (ptr (dat m))
else f 0 (rows m) (cols m) (ptr (dat m))
multiplyAux order fun a b = unsafePerformIO $ do
when (cols a /= rows b) $ error $ "inconsistent dimensions in contraction "++
show (rows a,cols a) ++ " x " ++ show (rows b, cols b)
r <- createMatrix order (rows a) (cols b)
fun // gmatC a // gmatC b // mat dat r // check "multiplyAux" [dat a, dat b]
return r
foreign import ccall safe "aux.h multiplyR"
cmultiplyR :: Int -> Double ::> (Int -> Double ::> (Double ::> IO Int))
foreign import ccall safe "aux.h multiplyC"
cmultiplyC :: Int -> Complex Double ::> (Int -> Complex Double ::> (Complex Double ::> IO Int))
multiply :: (Num a, Field a) => MatrixOrder -> Matrix a -> Matrix a -> Matrix a
multiply RowMajor a b = multiplyD RowMajor a b
multiply ColumnMajor a b = trans $ multiplyT ColumnMajor a b
multiplyT order a b = multiplyD order (trans b) (trans a)
multiplyD order a b
| isReal (baseOf.dat) a = scast $ multiplyAux order cmultiplyR (scast a) (scast b)
| isComp (baseOf.dat) a = scast $ multiplyAux order cmultiplyC (scast a) (scast b)
| otherwise = multiplyG a b
|