1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
{-# LANGUAGE FlexibleContexts #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Packed.Vector
-- Copyright : (c) Alberto Ruiz 2007
-- License : GPL-style
--
-- Maintainer : Alberto Ruiz <aruiz@um.es>
-- Stability : provisional
-- Portability : portable
--
-- 1D arrays suitable for numeric computations using external libraries.
--
-- This module provides basic functions for manipulation of structure.
--
-----------------------------------------------------------------------------
module Data.Packed.Vector (
Vector,
fromList, (|>), toList, buildVector,
dim, (@>),
subVector, takesV, join,
mapVector, zipVector, zipVectorWith, unzipVector, unzipVectorWith,
mapVectorM, mapVectorM_, mapVectorWithIndexM, mapVectorWithIndexM_,
foldLoop, foldVector, foldVectorG, foldVectorWithIndex,
successive_, successive
) where
import Data.Packed.Internal.Vector
import Data.Binary
import Foreign.Storable
import Control.Monad(replicateM)
-------------------------------------------------------------------
-- a 64K cache, with a Double taking 13 bytes in Bytestring,
-- implies a chunk size of 5041
chunk :: Int
chunk = 5000
chunks :: Int -> [Int]
chunks d = let c = d `div` chunk
m = d `mod` chunk
in if m /= 0 then reverse (m:(replicate c chunk)) else (replicate c chunk)
putVector v = do
let d = dim v
mapM_ (\i -> put $ v @> i) [0..(d-1)]
getVector d = do
xs <- replicateM d get
return $! fromList xs
instance (Binary a, Storable a) => Binary (Vector a) where
put v = do
let d = dim v
put d
mapM_ putVector $! takesV (chunks d) v
get = do
d <- get
vs <- mapM getVector $ chunks d
return $! join vs
-------------------------------------------------------------------
{- | creates a Vector of the specified length using the supplied function to
to map the index to the value at that index.
@> buildVector 4 fromIntegral
4 |> [0.0,1.0,2.0,3.0]@
-}
buildVector :: Storable a => Int -> (Int -> a) -> Vector a
buildVector len f =
fromList $ map f [0 .. (len - 1)]
-- | zip for Vectors
zipVector :: (Storable a, Storable b, Storable (a,b)) => Vector a -> Vector b -> Vector (a,b)
zipVector = zipVectorWith (,)
-- | unzip for Vectors
unzipVector :: (Storable a, Storable b, Storable (a,b)) => Vector (a,b) -> (Vector a,Vector b)
unzipVector = unzipVectorWith id
-------------------------------------------------------------------
newtype State s a = State { runState :: s -> (a,s) }
instance Monad (State s) where
return a = State $ \s -> (a,s)
m >>= f = State $ \s -> let (a,s') = runState m s
in runState (f a) s'
state_get :: State s s
state_get = State $ \s -> (s,s)
state_put :: s -> State s ()
state_put s = State $ \_ -> ((),s)
evalState :: State s a -> s -> a
evalState m s = fst $ runState m s
newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }
instance Monad m => Monad (MaybeT m) where
return a = MaybeT $ return $ Just a
m >>= f = MaybeT $ do
res <- runMaybeT m
case res of
Nothing -> return Nothing
Just r -> runMaybeT (f r)
fail _ = MaybeT $ return Nothing
lift_maybe m = MaybeT $ do
res <- m
return $ Just res
-- | apply a test to successive elements of a vector, evaluates to true iff test passes for all pairs
successive_ :: Storable a => (a -> a -> Bool) -> Vector a -> Bool
successive_ t v = maybe False (\_ -> True) $ evalState (runMaybeT (mapVectorM_ step (subVector 1 (dim v - 1) v))) (v @> 0)
where step e = do
ep <- lift_maybe $ state_get
if t e ep
then lift_maybe $ state_put e
else (fail "successive_ test failed")
-- | operate on successive elements of a vector and return the resulting vector, whose length 1 less than that of the input
successive :: (Storable a, Storable b) => (a -> a -> b) -> Vector a -> Vector b
successive f v = evalState (mapVectorM step (subVector 1 (dim v - 1) v)) (v @> 0)
where step e = do
ep <- state_get
state_put e
return $ f ep e
-------------------------------------------------------------------
|