summaryrefslogtreecommitdiff
path: root/lib/Data/Packed/Vector.hs
blob: 23fe37fb535a7b1ddeba5f08ecda6630a4f82900 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
{-# LANGUAGE FlexibleContexts #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Packed.Vector
-- Copyright   :  (c) Alberto Ruiz 2007
-- License     :  GPL-style
--
-- Maintainer  :  Alberto Ruiz <aruiz@um.es>
-- Stability   :  provisional
-- Portability :  portable
--
-- 1D arrays suitable for numeric computations using external libraries.
--
-- This module provides basic functions for manipulation of structure.
--
-----------------------------------------------------------------------------

module Data.Packed.Vector (
    Vector,
    fromList, (|>), toList, buildVector,
    dim, (@>),
    subVector, takesV, join,
    mapVector, zipVector, zipVectorWith, unzipVector, unzipVectorWith,
    mapVectorM, mapVectorM_, mapVectorWithIndexM, mapVectorWithIndexM_,
    foldLoop, foldVector, foldVectorG, foldVectorWithIndex,
    successive_, successive
) where

import Data.Packed.Internal.Vector
import Data.Binary
import Foreign.Storable
import Control.Monad(replicateM)

-------------------------------------------------------------------

-- a 64K cache, with a Double taking 13 bytes in Bytestring,
-- implies a chunk size of 5041
chunk :: Int
chunk = 5000

chunks :: Int -> [Int]
chunks d = let c = d `div` chunk
               m = d `mod` chunk
           in if m /= 0 then reverse (m:(replicate c chunk)) else (replicate c chunk)  

putVector v = do
              let d = dim v
              mapM_ (\i -> put $ v @> i) [0..(d-1)]

getVector d = do
              xs <- replicateM d get
              return $! fromList xs

instance (Binary a, Storable a) => Binary (Vector a) where
    put v = do
            let d = dim v
            put d
            mapM_ putVector $! takesV (chunks d) v
    get = do
          d <- get
          vs <- mapM getVector $ chunks d
          return $! join vs

-------------------------------------------------------------------

{- | creates a Vector of the specified length using the supplied function to
     to map the index to the value at that index.

@> buildVector 4 fromIntegral
4 |> [0.0,1.0,2.0,3.0]@

-}
buildVector :: Storable a => Int -> (Int -> a) -> Vector a
buildVector len f =
    fromList $ map f [0 .. (len - 1)]


-- | zip for Vectors
zipVector :: (Storable a, Storable b, Storable (a,b)) => Vector a -> Vector b -> Vector (a,b)
zipVector = zipVectorWith (,)

-- | unzip for Vectors
unzipVector :: (Storable a, Storable b, Storable (a,b)) => Vector (a,b) -> (Vector a,Vector b)
unzipVector = unzipVectorWith id

-------------------------------------------------------------------

newtype State s a = State { runState :: s -> (a,s) }

instance Monad (State s) where
    return a = State $ \s -> (a,s)
    m >>= f = State $ \s -> let (a,s') = runState m s
                            in runState (f a) s'

state_get :: State s s
state_get = State $ \s -> (s,s)

state_put :: s -> State s ()
state_put s = State $ \_ -> ((),s)

evalState :: State s a -> s -> a
evalState m s = fst $ runState m s

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

instance Monad m => Monad (MaybeT m) where
    return a = MaybeT $ return $ Just a
    m >>= f  = MaybeT $ do
                        res <- runMaybeT m
                        case res of
                                 Nothing -> return Nothing
                                 Just r  -> runMaybeT (f r)
    fail _   = MaybeT $ return Nothing

lift_maybe m = MaybeT $ do
                        res <- m
                        return $ Just res

-- | apply a test to successive elements of a vector, evaluates to true iff test passes for all pairs
successive_ :: Storable a => (a -> a -> Bool) -> Vector a -> Bool
successive_ t v = maybe False (\_ -> True) $ evalState (runMaybeT (mapVectorM_ step (subVector 1 (dim v - 1) v))) (v @> 0)
   where step e = do
                  ep <- lift_maybe $ state_get
                  if t e ep
                     then lift_maybe $ state_put e
                     else (fail "successive_ test failed")

-- | operate on successive elements of a vector and return the resulting vector, whose length 1 less than that of the input
successive :: (Storable a, Storable b) => (a -> a -> b) -> Vector a -> Vector b
successive f v = evalState (mapVectorM step (subVector 1 (dim v - 1) v)) (v @> 0)
   where step e = do
                  ep <- state_get
                  state_put e
                  return $ f ep e

-------------------------------------------------------------------