1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
{-# OPTIONS_GHC -fglasgow-exts #-}
-----------------------------------------------------------------------------
{- |
Module : LinearAlgebra.Algorithms
Copyright : (c) Alberto Ruiz 2006-7
License : GPL-style
Maintainer : Alberto Ruiz (aruiz at um dot es)
Stability : provisional
Portability : uses ffi
-}
-----------------------------------------------------------------------------
module LinearAlgebra.Algorithms (
mXm, mXv, vXm,
inv,
pinv,
pinvTol,
pinvTolg,
nullspacePrec,
nullVector,
Normed(..), NormType(..),
det,
eps, i
) where
import Data.Packed.Internal
import Data.Packed.Matrix
import GSL.Matrix
import GSL.Vector
import LAPACK
import Complex
{- | Machine precision of a Double.
>> eps
> 2.22044604925031e-16
(The value used by GNU-Octave)
-}
eps :: Double
eps = 2.22044604925031e-16
{- | The imaginary unit
@> 'ident' 3 \<\> i
1.i 0. 0.
0. 1.i 0.
0. 0. 1.i@
-}
i :: Complex Double
i = 0:+1
-- | matrix product
mXm :: (Num t, Field t) => Matrix t -> Matrix t -> Matrix t
mXm = multiply RowMajor
-- | matrix - vector product
mXv :: (Num t, Field t) => Matrix t -> Vector t -> Vector t
mXv m v = flatten $ m `mXm` (asColumn v)
-- | vector - matrix product
vXm :: (Num t, Field t) => Vector t -> Matrix t -> Vector t
vXm v m = flatten $ (asRow v) `mXm` m
-- | Pseudoinverse of a real matrix
--
-- @dispR 3 $ pinv (fromLists [[1,2],
-- [3,4],
-- [5,6]])
--matrix (2x3)
-- -1.333 | -0.333 | 0.667
-- 1.083 | 0.333 | -0.417@
--
pinv :: Matrix Double -> Matrix Double
pinv m = pinvTol 1 m
--pinv m = linearSolveSVDR Nothing m (ident (rows m))
{- -| Pseudoinverse of a real matrix with the default tolerance used by GNU-Octave: the singular values less than max (rows, colums) * greatest singular value * 'eps' are ignored. See 'pinvTol'.
@\> let m = 'fromLists' [[ 1, 2]
,[ 5, 8]
,[10,-5]]
\> pinv m
9.353e-3 4.539e-2 7.637e-2
2.231e-2 8.993e-2 -4.719e-2
\
\> m \<\> pinv m \<\> m
1. 2.
5. 8.
10. -5.@
-}
--pinvg :: Matrix Double -> Matrix Double
pinvg m = pinvTolg 1 m
{- | Pseudoinverse of a real matrix with the desired tolerance, expressed as a
multiplicative factor of the default tolerance used by GNU-Octave (see 'pinv').
@\> let m = 'fromLists' [[1,0, 0]
,[0,1, 0]
,[0,0,1e-10]]
\
\> 'pinv' m
1. 0. 0.
0. 1. 0.
0. 0. 10000000000.
\
\> pinvTol 1E8 m
1. 0. 0.
0. 1. 0.
0. 0. 1.@
-}
pinvTol :: Double -> Matrix Double -> Matrix Double
pinvTol t m = v' `mXm` diag s' `mXm` trans u' where
(u,s,v) = svdR' m
sl@(g:_) = toList s
s' = fromList . map rec $ sl
rec x = if x < g*tol then 1 else 1/x
tol = (fromIntegral (max (rows m) (cols m)) * g * t * eps)
r = rows m
c = cols m
d = dim s
u' = takeColumns d u
v' = takeColumns d v
pinvTolg :: Double -> Matrix Double -> Matrix Double
pinvTolg t m = v `mXm` diag s' `mXm` trans u where
(u,s,v) = svdg m
sl@(g:_) = toList s
s' = fromList . map rec $ sl
rec x = if x < g*tol then 1 else 1/x
tol = (fromIntegral (max (rows m) (cols m)) * g * t * eps)
{- | Inverse of a square matrix.
inv m = 'linearSolveR' m ('ident' ('rows' m))
@\>inv ('fromLists' [[1,4]
,[0,2]])
1. -2.
0. 0.500@
-}
inv :: Matrix Double -> Matrix Double
inv m = if rows m == cols m
then m `linearSolveR` ident (rows m)
else error "inv of nonsquare matrix"
{- - | Shortcut for the 2-norm ('pnorm' 2)
@ > norm $ 'hilb' 5
1.5670506910982311
@
@\> norm $ 'fromList' [1,-1,'i',-'i']
2.0@
-}
{- | Determinant of a square matrix, computed from the LU decomposition.
@\> det ('fromLists' [[7,2],[3,8]])
50.0@
-}
det :: Matrix Double -> Double
det m = s * (product $ toList $ takeDiag $ u)
where (_,u,_,s) = luR m
---------------------------------------------------------------------------
norm2 :: Vector Double -> Double
norm2 = toScalarR Norm2
norm1 :: Vector Double -> Double
norm1 = toScalarR AbsSum
vectorMax :: Vector Double -> Double
vectorMax = toScalarR Max
vectorMin :: Vector Double -> Double
vectorMin = toScalarR Min
vectorMaxIndex :: Vector Double -> Int
vectorMaxIndex = round . toScalarR MaxIdx
vectorMinIndex :: Vector Double -> Int
vectorMinIndex = round . toScalarR MinIdx
data NormType = Infinity | PNorm1 | PNorm2 -- PNorm Int
pnormRV PNorm2 = norm2
pnormRV PNorm1 = norm1
pnormRV Infinity = vectorMax . vectorMapR Abs
--pnormRV _ = error "pnormRV not yet defined"
pnormCV PNorm2 = norm2 . asReal
pnormCV PNorm1 = norm1 . liftVector magnitude
pnormCV Infinity = vectorMax . liftVector magnitude
--pnormCV _ = error "pnormCV not yet defined"
pnormRM PNorm2 m = head (toList s) where (_,s,_) = svdR' m
pnormRM PNorm1 m = vectorMax $ constant 1 (rows m) `vXm` liftMatrix (vectorMapR Abs) m
pnormRM Infinity m = vectorMax $ liftMatrix (vectorMapR Abs) m `mXv` constant 1 (cols m)
--pnormRM _ _ = error "p norm not yet defined"
pnormCM PNorm2 m = head (toList s) where (_,s,_) = svdC' m
pnormCM PNorm1 m = vectorMax $ constant 1 (rows m) `vXm` liftMatrix (liftVector magnitude) m
pnormCM Infinity m = vectorMax $ liftMatrix (liftVector magnitude) m `mXv` constant 1 (cols m)
--pnormCM _ _ = error "p norm not yet defined"
-- -- | computes the p-norm of a matrix or vector (with the same definitions as GNU-octave). pnorm 0 denotes \\inf-norm. See also 'norm'.
--pnorm :: (Container t, Field a) => Int -> t a -> Double
--pnorm = pnormG
class Normed t where
pnorm :: NormType -> t -> Double
norm :: t -> Double
norm = pnorm PNorm2
instance Normed (Vector Double) where
pnorm = pnormRV
instance Normed (Vector (Complex Double)) where
pnorm = pnormCV
instance Normed (Matrix Double) where
pnorm = pnormRM
instance Normed (Matrix (Complex Double)) where
pnorm = pnormCM
-----------------------------------------------------------------------
-- | The nullspace of a real matrix from its SVD decomposition.
nullspacePrec :: Double -- ^ relative tolerance in 'eps' units
-> Matrix Double -- ^ input matrix
-> [Vector Double] -- ^ list of unitary vectors spanning the nullspace
nullspacePrec t m = ns where
(_,s,v) = svdR' m
sl@(g:_) = toList s
tol = (fromIntegral (max (rows m) (cols m)) * g * t * eps)
rank = length (filter (> g*tol) sl)
ns = drop rank (toColumns v)
-- | The nullspace of a real matrix, assumed to be one-dimensional, with default tolerance (shortcut for @last . nullspacePrec 1@).
nullVector :: Matrix Double -> Vector Double
nullVector = last . nullspacePrec 1
|