1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
|
{-# LANGUAGE CPP #-}
{-# OPTIONS_GHC -fno-warn-unused-imports -fno-warn-incomplete-patterns #-}
-----------------------------------------------------------------------------
{- |
Module : Numeric.LinearAlgebra.Tests
Copyright : (c) Alberto Ruiz 2007-9
License : GPL-style
Maintainer : Alberto Ruiz (aruiz at um dot es)
Stability : provisional
Portability : portable
Some tests.
-}
module Numeric.LinearAlgebra.Tests(
-- module Numeric.LinearAlgebra.Tests.Instances,
-- module Numeric.LinearAlgebra.Tests.Properties,
qCheck, runTests, runBenchmarks
--, runBigTests
) where
import Numeric.LinearAlgebra
import Numeric.LinearAlgebra.LAPACK
import Numeric.LinearAlgebra.Tests.Instances
import Numeric.LinearAlgebra.Tests.Properties
import Test.HUnit hiding ((~:),test,Testable)
import System.Info
import Data.List(foldl1')
import Numeric.GSL
import Prelude hiding ((^))
import qualified Prelude
import System.CPUTime
import Text.Printf
#include "Tests/quickCheckCompat.h"
a ^ b = a Prelude.^ (b :: Int)
utest str b = TestCase $ assertBool str b
a ~~ b = fromList a |~| fromList b
feye n = flipud (ident n) :: Matrix Double
detTest1 = det m == 26
&& det mc == 38 :+ (-3)
&& det (feye 2) == -1
where
m = (3><3)
[ 1, 2, 3
, 4, 5, 7
, 2, 8, 4 :: Double
]
mc = (3><3)
[ 1, 2, 3
, 4, 5, 7
, 2, 8, i
]
--------------------------------------------------------------------
polyEval cs x = foldr (\c ac->ac*x+c) 0 cs
polySolveProp p = length p <2 || last p == 0|| 1E-8 > maximum (map magnitude $ map (polyEval (map (:+0) p)) (polySolve p))
---------------------------------------------------------------------
quad f a b = fst $ integrateQAGS 1E-9 100 f a b
-- A multiple integral can be easily defined using partial application
quad2 f a b g1 g2 = quad h a b
where h x = quad (f x) (g1 x) (g2 x)
volSphere r = 8 * quad2 (\x y -> sqrt (r*r-x*x-y*y))
0 r (const 0) (\x->sqrt (r*r-x*x))
---------------------------------------------------------------------
derivTest = abs (d (\x-> x * d (\y-> x+y) 1) 1 - 1) < 1E-10
where d f x = fst $ derivCentral 0.01 f x
---------------------------------------------------------------------
-- besselTest = utest "bessel_J0_e" ( abs (r-expected) < e )
-- where (r,e) = bessel_J0_e 5.0
-- expected = -0.17759677131433830434739701
-- exponentialTest = utest "exp_e10_e" ( abs (v*10^e - expected) < 4E-2 )
-- where (v,e,_err) = exp_e10_e 30.0
-- expected = exp 30.0
---------------------------------------------------------------------
nd1 = (3><3) [ 1/2, 1/4, 1/4
, 0/1, 1/2, 1/4
, 1/2, 1/4, 1/2 :: Double]
nd2 = (2><2) [1, 0, 1, 1:: Complex Double]
expmTest1 = expm nd1 :~14~: (3><3)
[ 1.762110887278176
, 0.478085470590435
, 0.478085470590435
, 0.104719410945666
, 1.709751181805343
, 0.425725765117601
, 0.851451530235203
, 0.530445176063267
, 1.814470592751009 ]
expmTest2 = expm nd2 :~15~: (2><2)
[ 2.718281828459045
, 0.000000000000000
, 2.718281828459045
, 2.718281828459045 ]
---------------------------------------------------------------------
minimizationTest = TestList
[ utest "minimization conjugatefr" (minim1 f df [5,7] ~~ [1,2])
, utest "minimization nmsimplex2" (minim2 f [5,7] `elem` [24,25])
]
where f [x,y] = 10*(x-1)^2 + 20*(y-2)^2 + 30
df [x,y] = [20*(x-1), 40*(y-2)]
minim1 g dg ini = fst $ minimizeD ConjugateFR 1E-3 30 1E-2 1E-4 g dg ini
minim2 g ini = rows $ snd $ minimize NMSimplex2 1E-2 30 [1,1] g ini
---------------------------------------------------------------------
rootFindingTest = TestList [ utest "root Hybrids" (fst sol1 ~~ [1,1])
, utest "root Newton" (rows (snd sol2) == 2)
]
where sol1 = root Hybrids 1E-7 30 (rosenbrock 1 10) [-10,-5]
sol2 = rootJ Newton 1E-7 30 (rosenbrock 1 10) (jacobian 1 10) [-10,-5]
rosenbrock a b [x,y] = [ a*(1-x), b*(y-x^2) ]
jacobian a b [x,_y] = [ [-a , 0]
, [-2*b*x, b] ]
---------------------------------------------------------------------
odeTest = utest "ode" (last (toLists sol) ~~ [-1.7588880332411019, 8.364348908711941e-2])
where sol = odeSolveV RK8pd 1E-6 1E-6 0 (l2v $ vanderpol 10) Nothing (fromList [1,0]) ts
ts = linspace 101 (0,100)
l2v f = \t -> fromList . f t . toList
vanderpol mu _t [x,y] = [y, -x + mu * y * (1-x^2) ]
---------------------------------------------------------------------
fittingTest = utest "levmar" (ok1 && ok2)
where
xs = map return [0 .. 39]
sigma = 0.1
ys = map return $ toList $ fromList (map (head . expModel [5,0.1,1]) xs)
+ scalar sigma * (randomVector 0 Gaussian 40)
dats = zip xs (zip ys (repeat sigma))
dat = zip xs ys
expModel [a,lambda,b] [t] = [a * exp (-lambda * t) + b]
expModelDer [a,lambda,_b] [t] = [[exp (-lambda * t), -t * a * exp(-lambda*t) , 1]]
sols = fst $ fitModelScaled 1E-4 1E-4 20 (expModel, expModelDer) dats [1,0,0]
sol = fst $ fitModel 1E-4 1E-4 20 (expModel, expModelDer) dat [1,0,0]
ok1 = and (zipWith f sols [5,0.1,1]) where f (x,d) r = abs (x-r)<2*d
ok2 = pnorm PNorm2 (fromList (map fst sols) - fromList sol) < 1E-5
-----------------------------------------------------
mbCholTest = utest "mbCholTest" (ok1 && ok2) where
m1 = (2><2) [2,5,5,8 :: Double]
m2 = (2><2) [3,5,5,9 :: Complex Double]
ok1 = mbCholSH m1 == Nothing
ok2 = mbCholSH m2 == Just (chol m2)
---------------------------------------------------------------------
randomTestGaussian = c :~1~: snd (meanCov dat) where
a = (3><3) [1,2,3,
2,4,0,
-2,2,1]
m = 3 |> [1,2,3]
c = a <> trans a
dat = gaussianSample 7 (10^6) m c
randomTestUniform = c :~1~: snd (meanCov dat) where
c = diag $ 3 |> map ((/12).(^2)) [1,2,3]
dat = uniformSample 7 (10^6) [(0,1),(1,3),(3,6)]
---------------------------------------------------------------------
rot :: Double -> Matrix Double
rot a = (3><3) [ c,0,s
, 0,1,0
,-s,0,c ]
where c = cos a
s = sin a
rotTest = fun (10^5) :~12~: rot 5E4
where fun n = foldl1' (<>) (map rot angles)
where angles = toList $ linspace n (0,1)
-- | All tests must pass with a maximum dimension of about 20
-- (some tests may fail with bigger sizes due to precision loss).
runTests :: Int -- ^ maximum dimension
-> IO ()
runTests n = do
setErrorHandlerOff
let test p = qCheck n p
putStrLn "------ mult"
test (multProp1 . rConsist)
test (multProp1 . cConsist)
test (multProp2 . rConsist)
test (multProp2 . cConsist)
putStrLn "------ sub-trans"
test (subProp . rM)
test (subProp . cM)
putStrLn "------ lu"
test (luProp . rM)
test (luProp . cM)
putStrLn "------ inv (linearSolve)"
test (invProp . rSqWC)
test (invProp . cSqWC)
putStrLn "------ luSolve"
test (linearSolveProp (luSolve.luPacked) . rSqWC)
test (linearSolveProp (luSolve.luPacked) . cSqWC)
putStrLn "------ cholSolve"
test (linearSolveProp (cholSolve.chol) . rPosDef)
test (linearSolveProp (cholSolve.chol) . cPosDef)
putStrLn "------ luSolveLS"
test (linearSolveProp linearSolveLS . rSqWC)
test (linearSolveProp linearSolveLS . cSqWC)
test (linearSolveProp2 linearSolveLS . rConsist)
test (linearSolveProp2 linearSolveLS . cConsist)
putStrLn "------ pinv (linearSolveSVD)"
test (pinvProp . rM)
test (pinvProp . cM)
putStrLn "------ det"
test (detProp . rSqWC)
test (detProp . cSqWC)
putStrLn "------ svd"
test (svdProp1 . rM)
test (svdProp1 . cM)
test (svdProp1a svdR)
test (svdProp1a svdC)
test (svdProp1a svdRd)
test (svdProp1b svdR)
test (svdProp1b svdC)
test (svdProp1b svdRd)
test (svdProp2 thinSVDR)
test (svdProp2 thinSVDC)
test (svdProp2 thinSVDRd)
test (svdProp2 thinSVDCd)
test (svdProp3 . rM)
test (svdProp3 . cM)
test (svdProp4 . rM)
test (svdProp4 . cM)
test (svdProp5a)
test (svdProp5b)
test (svdProp6a)
test (svdProp6b)
test (svdProp7 . rM)
test (svdProp7 . cM)
putStrLn "------ svdCd"
#ifdef NOZGESDD
putStrLn "Omitted"
#else
test (svdProp1a svdCd)
test (svdProp1b svdCd)
#endif
putStrLn "------ eig"
test (eigSHProp . rHer)
test (eigSHProp . cHer)
test (eigProp . rSq)
test (eigProp . cSq)
test (eigSHProp2 . rHer)
test (eigSHProp2 . cHer)
test (eigProp2 . rSq)
test (eigProp2 . cSq)
putStrLn "------ nullSpace"
test (nullspaceProp . rM)
test (nullspaceProp . cM)
putStrLn "------ qr"
test (qrProp . rM)
test (qrProp . cM)
test (rqProp . rM)
test (rqProp . cM)
putStrLn "------ hess"
test (hessProp . rSq)
test (hessProp . cSq)
putStrLn "------ schur"
test (schurProp2 . rSq)
test (schurProp1 . cSq)
putStrLn "------ chol"
test (cholProp . rPosDef)
test (cholProp . cPosDef)
putStrLn "------ expm"
test (expmDiagProp . rSqWC)
test (expmDiagProp . cSqWC)
putStrLn "------ fft"
test (\v -> ifft (fft v) |~| v)
putStrLn "------ vector operations"
test (\u -> sin u ^ 2 + cos u ^ 2 |~| (1::RM))
test $ (\u -> sin u ^ 2 + cos u ^ 2 |~| (1::CM)) . liftMatrix makeUnitary
test (\u -> sin u ** 2 + cos u ** 2 |~| (1::RM))
test (\u -> cos u * tan u |~| sin (u::RM))
test $ (\u -> cos u * tan u |~| sin (u::CM)) . liftMatrix makeUnitary
putStrLn "------ read . show"
test (\m -> (m::RM) == read (show m))
test (\m -> (m::CM) == read (show m))
test (\m -> toRows (m::RM) == read (show (toRows m)))
test (\m -> toRows (m::CM) == read (show (toRows m)))
putStrLn "------ some unit tests"
_ <- runTestTT $ TestList
[ utest "1E5 rots" rotTest
, utest "det1" detTest1
, utest "expm1" (expmTest1)
, utest "expm2" (expmTest2)
, utest "arith1" $ ((ones (100,100) * 5 + 2)/0.5 - 7)**2 |~| (49 :: RM)
, utest "arith2" $ ((scalar (1+i) * ones (100,100) * 5 + 2)/0.5 - 7)**2 |~| ( scalar (140*i-51) :: CM)
, utest "arith3" $ exp (scalar i * ones(10,10)*pi) + 1 |~| 0
, utest "<\\>" $ (3><2) [2,0,0,3,1,1::Double] <\> 3|>[4,9,5] |~| 2|>[2,3]
-- , utest "gamma" (gamma 5 == 24.0)
-- , besselTest
-- , exponentialTest
, utest "deriv" derivTest
, utest "integrate" (abs (volSphere 2.5 - 4/3*pi*2.5^3) < 1E-8)
, utest "polySolve" (polySolveProp [1,2,3,4])
, minimizationTest
, rootFindingTest
, utest "randomGaussian" randomTestGaussian
, utest "randomUniform" randomTestUniform
, utest "buildVector/Matrix" $
comp (10 |> [0::Double ..]) == buildVector 10 fromIntegral
&& ident 5 == buildMatrix 5 5 (\(r,c) -> if r==c then 1::Double else 0)
, utest "rank" $ rank ((2><3)[1,0,0,1,6*eps,0]) == 1
&& rank ((2><3)[1,0,0,1,7*eps,0]) == 2
, utest "block" $ fromBlocks [[ident 3,0],[0,ident 4]] == (ident 7 :: CM)
, odeTest
, fittingTest
, mbCholTest
]
return ()
makeUnitary v | realPart n > 1 = v / scalar n
| otherwise = v
where n = sqrt (conj v <.> v)
-- -- | Some additional tests on big matrices. They take a few minutes.
-- runBigTests :: IO ()
-- runBigTests = undefined
--------------------------------------------------------------------------------
-- | Performance measurements.
runBenchmarks :: IO ()
runBenchmarks = do
solveBench
subBench
multBench
svdBench
eigBench
putStrLn ""
--------------------------------
time msg act = do
putStr (msg++" ")
t0 <- getCPUTime
act `seq` putStr " "
t1 <- getCPUTime
printf "%6.2f s CPU\n" $ (fromIntegral (t1 - t0) / (10^12 :: Double)) :: IO ()
return ()
--------------------------------
manymult n = foldl1' (<>) (map rot2 angles) where
angles = toList $ linspace n (0,1)
rot2 :: Double -> Matrix Double
rot2 a = (3><3) [ c,0,s
, 0,1,0
,-s,0,c ]
where c = cos a
s = sin a
multb n = foldl1' (<>) (replicate (10^6) (ident n :: Matrix Double))
--------------------------------
subBench = do
putStrLn ""
let g = foldl1' (.) (replicate (10^5) (\v -> subVector 1 (dim v -1) v))
time "0.1M subVector " (g (constant 1 (1+10^5) :: Vector Double) @> 0)
let f = foldl1' (.) (replicate (10^5) (fromRows.toRows))
time "subVector-join 3" (f (ident 3 :: Matrix Double) @@>(0,0))
time "subVector-join 10" (f (ident 10 :: Matrix Double) @@>(0,0))
--------------------------------
multBench = do
let a = ident 1000 :: Matrix Double
let b = ident 2000 :: Matrix Double
a `seq` b `seq` putStrLn ""
time "product of 1M different 3x3 matrices" (manymult (10^6))
putStrLn ""
time "product of 1M constant 1x1 matrices" (multb 1)
time "product of 1M constant 3x3 matrices" (multb 3)
--time "product of 1M constant 5x5 matrices" (multb 5)
time "product of 1M const. 10x10 matrices" (multb 10)
--time "product of 1M const. 15x15 matrices" (multb 15)
time "product of 1M const. 20x20 matrices" (multb 20)
--time "product of 1M const. 25x25 matrices" (multb 25)
putStrLn ""
time "product (1000 x 1000)<>(1000 x 1000)" (a<>a)
time "product (2000 x 2000)<>(2000 x 2000)" (b<>b)
--------------------------------
eigBench = do
let m = reshape 1000 (randomVector 777 Uniform (1000*1000))
s = m + trans m
m `seq` s `seq` putStrLn ""
time "eigenvalues symmetric 1000x1000" (eigenvaluesSH' m)
time "eigenvectors symmetric 1000x1000" (snd $ eigSH' m)
time "eigenvalues general 1000x1000" (eigenvalues m)
time "eigenvectors general 1000x1000" (snd $ eig m)
--------------------------------
svdBench = do
let a = reshape 500 (randomVector 777 Uniform (3000*500))
b = reshape 1000 (randomVector 777 Uniform (1000*1000))
fv (_,_,v) = v@@>(0,0)
a `seq` b `seq` putStrLn ""
time "singular values 3000x500" (singularValues a)
time "thin svd 3000x500" (fv $ thinSVD a)
time "full svd 3000x500" (fv $ svd a)
time "singular values 1000x1000" (singularValues b)
time "full svd 1000x1000" (fv $ svd b)
--------------------------------
solveBenchN n = do
let x = uniformSample 777 (2*n) (replicate n (-1,1))
a = trans x <> x
b = asColumn $ randomVector 666 Uniform n
a `seq` b `seq` putStrLn ""
time ("svd solve " ++ show n) (linearSolveSVD a b)
time (" ls solve " ++ show n) (linearSolveLS a b)
time (" solve " ++ show n) (linearSolve a b)
time ("cholSolve " ++ show n) (cholSolve (chol a) b)
solveBench = do
solveBenchN 500
solveBenchN 1000
-- solveBenchN 1500
|