summaryrefslogtreecommitdiff
path: root/lib/Numeric/LinearAlgebra/Tests/Instances.hs
blob: 677ad2bf765ddf07a8e96db6b975dd1a8611364c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
{-# LANGUAGE FlexibleContexts, UndecidableInstances #-}
-----------------------------------------------------------------------------
{- |
Module      :  Numeric.LinearAlgebra.Tests.Instances
Copyright   :  (c) Alberto Ruiz 2008
License     :  GPL-style

Maintainer  :  Alberto Ruiz (aruiz at um dot es)
Stability   :  provisional
Portability :  portable

Arbitrary instances for vectors, matrices.

-}

module Numeric.LinearAlgebra.Tests.Instances(
    Sq(..),     rSq,cSq,
    Rot(..),    rRot,cRot,
    Her(..),    rHer,cHer,
    WC(..),     rWC,cWC,
    SqWC(..),   rSqWC, cSqWC,
    PosDef(..), rPosDef, cPosDef,
    Consistent(..), rConsist, cConsist,
    RM,CM, rM,cM
) where

import Numeric.LinearAlgebra
import Test.QuickCheck
import Control.Monad(replicateM)

instance (Arbitrary a, RealFloat a) => Arbitrary (Complex a) where
    arbitrary = do
        r <- arbitrary
        i <- arbitrary
        return (r:+i)
    coarbitrary = undefined

chooseDim = sized $ \m -> choose (1,max 1 m)

instance (Field a, Arbitrary a) => Arbitrary (Vector a) where 
   arbitrary = do m <- chooseDim
                  l <- vector m
                  return $ fromList l
   coarbitrary = undefined

instance (Element a, Arbitrary a) => Arbitrary (Matrix a) where 
    arbitrary = do
        m <- chooseDim
        n <- chooseDim
        l <- vector (m*n)
        return $ (m><n) l
    coarbitrary = undefined

-- a square matrix
newtype (Sq a) = Sq (Matrix a) deriving Show
instance (Element a, Arbitrary a) => Arbitrary (Sq a) where
    arbitrary = do
        n <- chooseDim
        l <- vector (n*n)
        return $ Sq $ (n><n) l
    coarbitrary = undefined

-- a unitary matrix
newtype (Rot a) = Rot (Matrix a) deriving Show
instance (Field a, Arbitrary a) => Arbitrary (Rot a) where
    arbitrary = do
        Sq m <- arbitrary
        let (q,_) = qr m
        return (Rot q)
    coarbitrary = undefined

-- a complex hermitian or real symmetric matrix
newtype (Her a) = Her (Matrix a) deriving Show
instance (Field a, Arbitrary a, Num (Vector a)) => Arbitrary (Her a) where
    arbitrary = do
        Sq m <- arbitrary
        let m' = m/2
        return $ Her (m' + ctrans m')
    coarbitrary = undefined

-- a well-conditioned general matrix (the singular values are between 1 and 100)
newtype (WC a) = WC (Matrix a) deriving Show
instance (Field a, Arbitrary a) => Arbitrary (WC a) where
    arbitrary = do
        m <- arbitrary
        let (u,_,v) = svd m
            r = rows m
            c = cols m
            n = min r c
        sv <- replicateM n (choose (1,100))
        let s = diagRect (fromList sv) r c
        return $ WC (u <> real s <> trans v)
    coarbitrary = undefined

-- a well-conditioned square matrix (the singular values are between 1 and 100)
newtype (SqWC a) = SqWC (Matrix a) deriving Show
instance (Field a, Arbitrary a) => Arbitrary (SqWC a) where
    arbitrary = do
        Sq m <- arbitrary
        let (u,_,v) = svd m
            n = rows m
        sv <- replicateM n (choose (1,100))
        let s = diag (fromList sv)
        return $ SqWC (u <> real s <> trans v)
    coarbitrary = undefined

-- a positive definite square matrix (the eigenvalues are between 0 and 100)
newtype (PosDef a) = PosDef (Matrix a) deriving Show
instance (Field a, Arbitrary a, Num (Vector a)) => Arbitrary (PosDef a) where
    arbitrary = do
        Her m <- arbitrary
        let (_,v) = eigSH m
            n = rows m
        l <- replicateM n (choose (0,100))
        let s = diag (fromList l)
            p = v <> real s <> ctrans v
        return $ PosDef (0.5 .* p + 0.5 .* ctrans p)
    coarbitrary = undefined

-- a pair of matrices that can be multiplied
newtype (Consistent a) = Consistent (Matrix a, Matrix a) deriving Show
instance (Field a, Arbitrary a) => Arbitrary (Consistent a) where
    arbitrary = do
        n <- chooseDim
        k <- chooseDim
        m <- chooseDim
        la <- vector (n*k)
        lb <- vector (k*m)
        return $ Consistent ((n><k) la, (k><m) lb)
    coarbitrary = undefined


type RM = Matrix Double
type CM = Matrix (Complex Double)

rM m = m :: RM
cM m = m :: CM

rHer (Her m) = m :: RM
cHer (Her m) = m :: CM

rRot (Rot m) = m :: RM
cRot (Rot m) = m :: CM

rSq  (Sq m)  = m :: RM
cSq  (Sq m)  = m :: CM

rWC (WC m) = m :: RM
cWC (WC m) = m :: CM

rSqWC (SqWC m) = m :: RM
cSqWC (SqWC m) = m :: CM

rPosDef (PosDef m) = m :: RM
cPosDef (PosDef m) = m :: CM

rConsist (Consistent (a,b)) = (a,b::RM)
cConsist (Consistent (a,b)) = (a,b::CM)