1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
{-# OPTIONS #-}
-----------------------------------------------------------------------------
{- |
Module : Numeric.LinearAlgebra.Tests.Properties
Copyright : (c) Alberto Ruiz 2008
License : GPL-style
Maintainer : Alberto Ruiz (aruiz at um dot es)
Stability : provisional
Portability : portable
Arbitrary instances for vectors, matrices.
-}
module Numeric.LinearAlgebra.Tests.Properties
where
import Numeric.LinearAlgebra
import Numeric.LinearAlgebra.Tests.Instances(Sq(..),Her(..),Rot(..))
import Test.QuickCheck
-- relative error
dist :: (Normed t, Num t) => t -> t -> Double
dist a b = r
where norm = pnorm Infinity
na = norm a
nb = norm b
nab = norm (a-b)
mx = max na nb
mn = min na nb
r = if mn < eps
then mx
else nab/mx
infixl 4 |~|
a |~| b = a :~10~: b
--a |~| b = dist a b < 10^^(-10)
data Aprox a = (:~) a Int
(~:) :: (Normed a, Num a) => Aprox a -> a -> Bool
a :~n~: b = dist a b < 10^^(-n)
------------------------------------------------------
square m = rows m == cols m
unitary m = square m && m <> ctrans m |~| ident (rows m)
hermitian m = square m && m |~| ctrans m
degenerate m = rank m < min (rows m) (cols m)
wellCond m = rcond m > 1/100
positiveDefinite m = minimum (toList e) > 0
where (e,v) = eigSH m
upperTriang m = rows m == 1 || down == z
where down = fromList $ concat $ zipWith drop [1..] (toLists (ctrans m))
z = constant 0 (dim down)
upperHessenberg m = rows m < 3 || down == z
where down = fromList $ concat $ zipWith drop [2..] (toLists (ctrans m))
z = constant 0 (dim down)
zeros (r,c) = reshape c (constant 0 (r*c))
ones (r,c) = zeros (r,c) + 1
-----------------------------------------------------
luProp m = m |~| p <> l <> u && det p == s
where (l,u,p,s) = lu m
invProp m = m <> inv m |~| ident (rows m)
pinvProp m = m <> p <> m |~| m
&& p <> m <> p |~| p
&& hermitian (m<>p)
&& hermitian (p<>m)
where p = pinv m
detProp m = s d1 |~| s d2
where d1 = det m
d2 = det' m * det q
det' m = product $ toList $ takeDiag r
(q,r) = qr m
s x = fromList [x]
nullspaceProp m = null nl `trivial` (null nl || m <> n |~| zeros (r,c))
where nl = nullspacePrec 1 m
n = fromColumns nl
r = rows m
c = cols m - rank m
svdProp1 m = u <> real d <> trans v |~| m
&& unitary u && unitary v
where (u,d,v) = full svd m
svdProp2 m = (m |~| 0) `trivial` ((m |~| 0) || u <> real (diag s) <> trans v |~| m)
where (u,s,v) = economy svd m
eigProp m = complex m <> v |~| v <> diag s
where (s, v) = eig m
eigSHProp m = m <> v |~| v <> real (diag s)
&& unitary v
&& m |~| v <> real (diag s) <> ctrans v
where (s, v) = eigSH m
qrProp m = q <> r |~| m && unitary q && upperTriang r
where (q,r) = qr m
hessProp m = m |~| p <> h <> ctrans p && unitary p && upperHessenberg h
where (p,h) = hess m
schurProp1 m = m |~| u <> s <> ctrans u && unitary u && upperTriang s
where (u,s) = schur m
schurProp2 m = m |~| u <> s <> ctrans u && unitary u && upperHessenberg s -- fixme
where (u,s) = schur m
cholProp m = m |~| ctrans c <> c && upperTriang c
where c = chol m
pos = positiveDefinite m
|