1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
|
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
-----------------------------------------------------------------------------
-- |
-- Module : Numeric.Matrix
-- Copyright : (c) Alberto Ruiz 2010
-- License : GPL-style
--
-- Maintainer : Alberto Ruiz <aruiz@um.es>
-- Stability : provisional
-- Portability : portable
--
-- Numeric instances and functions for 'Matrix'.
-- In the context of the standard numeric operators, one-component
-- vectors and matrices automatically expand to match the dimensions of the other operand.
--
-- Provides instances of standard classes 'Show', 'Read', 'Eq',
-- 'Num', 'Fractional', and 'Floating' for 'Matrix'.
--
-----------------------------------------------------------------------------
module Numeric.Matrix (
-- * Basic functions
module Data.Packed.Matrix,
module Numeric.Vector,
-- * Matrix creation
diag, ident,
-- * matrix operations
ctrans,
optimiseMult,
-- * Operators
(<>), (<\>),
-- * IO
dispf, disps, dispcf, vecdisp, latexFormat, format,
loadMatrix, saveMatrix, fromFile, fileDimensions,
readMatrix
) where
-------------------------------------------------------------------
import Data.Packed.Matrix
import Numeric.Vector
import Numeric.Chain
import Numeric.MatrixBoot
import Numeric.IO
import Numeric.LinearAlgebra.Algorithms
-------------------------------------------------------------------
instance Container Matrix a => Eq (Matrix a) where
(==) = equal
instance (Container Matrix a, Num (Vector a)) => Num (Matrix a) where
(+) = liftMatrix2Auto (+)
(-) = liftMatrix2Auto (-)
negate = liftMatrix negate
(*) = liftMatrix2Auto (*)
signum = liftMatrix signum
abs = liftMatrix abs
fromInteger = (1><1) . return . fromInteger
---------------------------------------------------
instance (Container Vector a, Fractional (Vector a), Num (Matrix a)) => Fractional (Matrix a) where
fromRational n = (1><1) [fromRational n]
(/) = liftMatrix2Auto (/)
---------------------------------------------------------
instance (Floating a, Container Vector a, Floating (Vector a), Fractional (Matrix a)) => Floating (Matrix a) where
sin = liftMatrix sin
cos = liftMatrix cos
tan = liftMatrix tan
asin = liftMatrix asin
acos = liftMatrix acos
atan = liftMatrix atan
sinh = liftMatrix sinh
cosh = liftMatrix cosh
tanh = liftMatrix tanh
asinh = liftMatrix asinh
acosh = liftMatrix acosh
atanh = liftMatrix atanh
exp = liftMatrix exp
log = liftMatrix log
(**) = liftMatrix2Auto (**)
sqrt = liftMatrix sqrt
pi = (1><1) [pi]
--------------------------------------------------------
class Mul a b c | a b -> c where
infixl 7 <>
-- | Matrix-matrix, matrix-vector, and vector-matrix products.
(<>) :: Product t => a t -> b t -> c t
instance Mul Matrix Matrix Matrix where
(<>) = mXm
instance Mul Matrix Vector Vector where
(<>) m v = flatten $ m <> (asColumn v)
instance Mul Vector Matrix Vector where
(<>) v m = flatten $ (asRow v) <> m
--------------------------------------------------------
-- | least squares solution of a linear system, similar to the \\ operator of Matlab\/Octave (based on linearSolveSVD).
(<\>) :: (Field a) => Matrix a -> Vector a -> Vector a
infixl 7 <\>
m <\> v = flatten (linearSolveSVD m (reshape 1 v))
|