1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
|
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE CPP #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Packed.Matrix
-- Copyright : (c) Alberto Ruiz 2007-10
-- License : BSD3
-- Maintainer : Alberto Ruiz
-- Stability : provisional
--
-- A Matrix representation suitable for numerical computations using LAPACK and GSL.
--
-- This module provides basic functions for manipulation of structure.
-----------------------------------------------------------------------------
module Internal.Element where
import Internal.Vector
import Internal.Matrix
import Internal.Vectorized
import qualified Internal.ST as ST
import Data.Array
import Text.Printf
import Data.List(transpose,intersperse)
import Data.List.Split(chunksOf)
import Foreign.Storable(Storable)
import System.IO.Unsafe(unsafePerformIO)
import Control.Monad(liftM)
-------------------------------------------------------------------
#ifdef BINARY
import Data.Binary
instance (Binary (Vector a), Element a) => Binary (Matrix a) where
put m = do
put (cols m)
put (flatten m)
get = do
c <- get
v <- get
return (reshape c v)
#endif
-------------------------------------------------------------------
instance (Show a, Element a) => (Show (Matrix a)) where
show m | rows m == 0 || cols m == 0 = sizes m ++" []"
show m = (sizes m++) . dsp . map (map show) . toLists $ m
sizes m = "("++show (rows m)++"><"++show (cols m)++")\n"
dsp as = (++" ]") . (" ["++) . init . drop 2 . unlines . map (" , "++) . map unwords' $ transpose mtp
where
mt = transpose as
longs = map (maximum . map length) mt
mtp = zipWith (\a b -> map (pad a) b) longs mt
pad n str = replicate (n - length str) ' ' ++ str
unwords' = concat . intersperse ", "
------------------------------------------------------------------
instance (Element a, Read a) => Read (Matrix a) where
readsPrec _ s = [((rs><cs) . read $ listnums, rest)]
where (thing,rest) = breakAt ']' s
(dims,listnums) = breakAt ')' thing
cs = read . init . fst. breakAt ')' . snd . breakAt '<' $ dims
rs = read . snd . breakAt '(' .init . fst . breakAt '>' $ dims
breakAt c l = (a++[c],tail b) where
(a,b) = break (==c) l
--------------------------------------------------------------------------------
-- | Specification of indexes for the operator '??'.
data Extractor
= All
| Range Int Int Int
| Pos (Vector I)
| PosCyc (Vector I)
| Take Int
| TakeLast Int
| Drop Int
| DropLast Int
deriving Show
ppext All = ":"
ppext (Range a 1 c) = printf "%d:%d" a c
ppext (Range a b c) = printf "%d:%d:%d" a b c
ppext (Pos v) = show (toList v)
ppext (PosCyc v) = "Cyclic"++show (toList v)
ppext (Take n) = printf "Take %d" n
ppext (Drop n) = printf "Drop %d" n
ppext (TakeLast n) = printf "TakeLast %d" n
ppext (DropLast n) = printf "DropLast %d" n
{- | General matrix slicing.
>>> m
(4><5)
[ 0, 1, 2, 3, 4
, 5, 6, 7, 8, 9
, 10, 11, 12, 13, 14
, 15, 16, 17, 18, 19 ]
>>> m ?? (Take 3, DropLast 2)
(3><3)
[ 0, 1, 2
, 5, 6, 7
, 10, 11, 12 ]
>>> m ?? (Pos (idxs[2,1]), All)
(2><5)
[ 10, 11, 12, 13, 14
, 5, 6, 7, 8, 9 ]
>>> m ?? (PosCyc (idxs[-7,80]), Range 4 (-2) 0)
(2><3)
[ 9, 7, 5
, 4, 2, 0 ]
-}
infixl 9 ??
(??) :: Element t => Matrix t -> (Extractor,Extractor) -> Matrix t
minEl = toScalarI Min
maxEl = toScalarI Max
cmodi = vectorMapValI ModVS
extractError m (e1,e2)= error $ printf "can't extract (%s,%s) from matrix %dx%d" (ppext e1::String) (ppext e2::String) (rows m) (cols m)
m ?? (Range a s b,e) | s /= 1 = m ?? (Pos (idxs [a,a+s .. b]), e)
m ?? (e,Range a s b) | s /= 1 = m ?? (e, Pos (idxs [a,a+s .. b]))
m ?? e@(Range a _ b,_) | a < 0 || b >= rows m = extractError m e
m ?? e@(_,Range a _ b) | a < 0 || b >= cols m = extractError m e
m ?? e@(Pos vs,_) | dim vs>0 && (minEl vs < 0 || maxEl vs >= fi (rows m)) = extractError m e
m ?? e@(_,Pos vs) | dim vs>0 && (minEl vs < 0 || maxEl vs >= fi (cols m)) = extractError m e
m ?? (All,All) = m
m ?? (Range a _ b,e) | a > b = m ?? (Take 0,e)
m ?? (e,Range a _ b) | a > b = m ?? (e,Take 0)
m ?? (Take n,e)
| n <= 0 = (0><cols m) [] ?? (All,e)
| n >= rows m = m ?? (All,e)
m ?? (e,Take n)
| n <= 0 = (rows m><0) [] ?? (e,All)
| n >= cols m = m ?? (e,All)
m ?? (Drop n,e)
| n <= 0 = m ?? (All,e)
| n >= rows m = (0><cols m) [] ?? (All,e)
m ?? (e,Drop n)
| n <= 0 = m ?? (e,All)
| n >= cols m = (rows m><0) [] ?? (e,All)
m ?? (TakeLast n, e) = m ?? (Drop (rows m - n), e)
m ?? (e, TakeLast n) = m ?? (e, Drop (cols m - n))
m ?? (DropLast n, e) = m ?? (Take (rows m - n), e)
m ?? (e, DropLast n) = m ?? (e, Take (cols m - n))
m ?? (er,ec) = unsafePerformIO $ extractR m moder rs modec cs
where
(moder,rs) = mkExt (rows m) er
(modec,cs) = mkExt (cols m) ec
ran a b = (0, idxs [a,b])
pos ks = (1, ks)
mkExt _ (Pos ks) = pos ks
mkExt n (PosCyc ks)
| n == 0 = mkExt n (Take 0)
| otherwise = pos (cmodi (fi n) ks)
mkExt _ (Range mn _ mx) = ran mn mx
mkExt _ (Take k) = ran 0 (k-1)
mkExt n (Drop k) = ran k (n-1)
mkExt n _ = ran 0 (n-1) -- All
--------------------------------------------------------------------------------
-- | obtains the common value of a property of a list
common :: (Eq a) => (b->a) -> [b] -> Maybe a
common f = commonval . map f
where
commonval :: (Eq a) => [a] -> Maybe a
commonval [] = Nothing
commonval [a] = Just a
commonval (a:b:xs) = if a==b then commonval (b:xs) else Nothing
-- | creates a matrix from a vertical list of matrices
joinVert :: Element t => [Matrix t] -> Matrix t
joinVert [] = emptyM 0 0
joinVert ms = case common cols ms of
Nothing -> error "(impossible) joinVert on matrices with different number of columns"
Just c -> matrixFromVector RowMajor (sum (map rows ms)) c $ vjoin (map flatten ms)
-- | creates a matrix from a horizontal list of matrices
joinHoriz :: Element t => [Matrix t] -> Matrix t
joinHoriz ms = trans. joinVert . map trans $ ms
{- | Create a matrix from blocks given as a list of lists of matrices.
Single row-column components are automatically expanded to match the
corresponding common row and column:
@
disp = putStr . dispf 2
@
>>> disp $ fromBlocks [[ident 5, 7, row[10,20]], [3, diagl[1,2,3], 0]]
8x10
1 0 0 0 0 7 7 7 10 20
0 1 0 0 0 7 7 7 10 20
0 0 1 0 0 7 7 7 10 20
0 0 0 1 0 7 7 7 10 20
0 0 0 0 1 7 7 7 10 20
3 3 3 3 3 1 0 0 0 0
3 3 3 3 3 0 2 0 0 0
3 3 3 3 3 0 0 3 0 0
-}
fromBlocks :: Element t => [[Matrix t]] -> Matrix t
fromBlocks = fromBlocksRaw . adaptBlocks
fromBlocksRaw mms = joinVert . map joinHoriz $ mms
adaptBlocks ms = ms' where
bc = case common length ms of
Just c -> c
Nothing -> error "fromBlocks requires rectangular [[Matrix]]"
rs = map (compatdim . map rows) ms
cs = map (compatdim . map cols) (transpose ms)
szs = sequence [rs,cs]
ms' = chunksOf bc $ zipWith g szs (concat ms)
g [Just nr,Just nc] m
| nr == r && nc == c = m
| r == 1 && c == 1 = matrixFromVector RowMajor nr nc (constantD x (nr*nc))
| r == 1 = fromRows (replicate nr (flatten m))
| otherwise = fromColumns (replicate nc (flatten m))
where
r = rows m
c = cols m
x = m@@>(0,0)
g _ _ = error "inconsistent dimensions in fromBlocks"
--------------------------------------------------------------------------------
{- | create a block diagonal matrix
>>> disp 2 $ diagBlock [konst 1 (2,2), konst 2 (3,5), col [5,7]]
7x8
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 2 2 2 2 2 0
0 0 2 2 2 2 2 0
0 0 2 2 2 2 2 0
0 0 0 0 0 0 0 5
0 0 0 0 0 0 0 7
>>> diagBlock [(0><4)[], konst 2 (2,3)] :: Matrix Double
(2><7)
[ 0.0, 0.0, 0.0, 0.0, 2.0, 2.0, 2.0
, 0.0, 0.0, 0.0, 0.0, 2.0, 2.0, 2.0 ]
-}
diagBlock :: (Element t, Num t) => [Matrix t] -> Matrix t
diagBlock ms = fromBlocks $ zipWith f ms [0..]
where
f m k = take n $ replicate k z ++ m : repeat z
n = length ms
z = (1><1) [0]
--------------------------------------------------------------------------------
-- | Reverse rows
flipud :: Element t => Matrix t -> Matrix t
flipud m = extractRows [r-1,r-2 .. 0] $ m
where
r = rows m
-- | Reverse columns
fliprl :: Element t => Matrix t -> Matrix t
fliprl m = extractColumns [c-1,c-2 .. 0] $ m
where
c = cols m
------------------------------------------------------------
{- | creates a rectangular diagonal matrix:
>>> diagRect 7 (fromList [10,20,30]) 4 5 :: Matrix Double
(4><5)
[ 10.0, 7.0, 7.0, 7.0, 7.0
, 7.0, 20.0, 7.0, 7.0, 7.0
, 7.0, 7.0, 30.0, 7.0, 7.0
, 7.0, 7.0, 7.0, 7.0, 7.0 ]
-}
diagRect :: (Storable t) => t -> Vector t -> Int -> Int -> Matrix t
diagRect z v r c = ST.runSTMatrix $ do
m <- ST.newMatrix z r c
let d = min r c `min` (dim v)
mapM_ (\k -> ST.writeMatrix m k k (v@>k)) [0..d-1]
return m
-- | extracts the diagonal from a rectangular matrix
takeDiag :: (Element t) => Matrix t -> Vector t
takeDiag m = fromList [flatten m @> (k*cols m+k) | k <- [0 .. min (rows m) (cols m) -1]]
------------------------------------------------------------
{- | create a general matrix
>>> (2><3) [2, 4, 7+2*𝑖, -3, 11, 0]
(2><3)
[ 2.0 :+ 0.0, 4.0 :+ 0.0, 7.0 :+ 2.0
, (-3.0) :+ (-0.0), 11.0 :+ 0.0, 0.0 :+ 0.0 ]
The input list is explicitly truncated, so that it can
safely be used with lists that are too long (like infinite lists).
>>> (2><3)[1..]
(2><3)
[ 1.0, 2.0, 3.0
, 4.0, 5.0, 6.0 ]
This is the format produced by the instances of Show (Matrix a), which
can also be used for input.
-}
(><) :: (Storable a) => Int -> Int -> [a] -> Matrix a
r >< c = f where
f l | dim v == r*c = matrixFromVector RowMajor r c v
| otherwise = error $ "inconsistent list size = "
++show (dim v) ++" in ("++show r++"><"++show c++")"
where v = fromList $ take (r*c) l
----------------------------------------------------------------
takeRows :: Element t => Int -> Matrix t -> Matrix t
takeRows n mt = subMatrix (0,0) (n, cols mt) mt
-- | Creates a matrix with the last n rows of another matrix
takeLastRows :: Element t => Int -> Matrix t -> Matrix t
takeLastRows n mt = subMatrix (rows mt - n, 0) (n, cols mt) mt
dropRows :: Element t => Int -> Matrix t -> Matrix t
dropRows n mt = subMatrix (n,0) (rows mt - n, cols mt) mt
-- | Creates a copy of a matrix without the last n rows
dropLastRows :: Element t => Int -> Matrix t -> Matrix t
dropLastRows n mt = subMatrix (0,0) (rows mt - n, cols mt) mt
takeColumns :: Element t => Int -> Matrix t -> Matrix t
takeColumns n mt = subMatrix (0,0) (rows mt, n) mt
-- |Creates a matrix with the last n columns of another matrix
takeLastColumns :: Element t => Int -> Matrix t -> Matrix t
takeLastColumns n mt = subMatrix (0, cols mt - n) (rows mt, n) mt
dropColumns :: Element t => Int -> Matrix t -> Matrix t
dropColumns n mt = subMatrix (0,n) (rows mt, cols mt - n) mt
-- | Creates a copy of a matrix without the last n columns
dropLastColumns :: Element t => Int -> Matrix t -> Matrix t
dropLastColumns n mt = subMatrix (0,0) (rows mt, cols mt - n) mt
----------------------------------------------------------------
{- | Creates a 'Matrix' from a list of lists (considered as rows).
>>> fromLists [[1,2],[3,4],[5,6]]
(3><2)
[ 1.0, 2.0
, 3.0, 4.0
, 5.0, 6.0 ]
-}
fromLists :: Element t => [[t]] -> Matrix t
fromLists = fromRows . map fromList
-- | creates a 1-row matrix from a vector
--
-- >>> asRow (fromList [1..5])
-- (1><5)
-- [ 1.0, 2.0, 3.0, 4.0, 5.0 ]
--
asRow :: Storable a => Vector a -> Matrix a
asRow = trans . asColumn
-- | creates a 1-column matrix from a vector
--
-- >>> asColumn (fromList [1..5])
-- (5><1)
-- [ 1.0
-- , 2.0
-- , 3.0
-- , 4.0
-- , 5.0 ]
--
asColumn :: Storable a => Vector a -> Matrix a
asColumn v = reshape 1 v
{- | creates a Matrix of the specified size using the supplied function to
to map the row\/column position to the value at that row\/column position.
@> buildMatrix 3 4 (\\(r,c) -> fromIntegral r * fromIntegral c)
(3><4)
[ 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 1.0, 2.0, 3.0, 4.0
, 0.0, 2.0, 4.0, 6.0, 8.0]@
Hilbert matrix of order N:
@hilb n = buildMatrix n n (\\(i,j)->1/(fromIntegral i + fromIntegral j +1))@
-}
buildMatrix :: Element a => Int -> Int -> ((Int, Int) -> a) -> Matrix a
buildMatrix rc cc f =
fromLists $ map (map f)
$ map (\ ri -> map (\ ci -> (ri, ci)) [0 .. (cc - 1)]) [0 .. (rc - 1)]
-----------------------------------------------------
fromArray2D :: (Storable e) => Array (Int, Int) e -> Matrix e
fromArray2D m = (r><c) (elems m)
where ((r0,c0),(r1,c1)) = bounds m
r = r1-r0+1
c = c1-c0+1
-- | rearranges the rows of a matrix according to the order given in a list of integers.
extractRows :: Element t => [Int] -> Matrix t -> Matrix t
extractRows l m = m ?? (Pos (idxs l), All)
-- | rearranges the rows of a matrix according to the order given in a list of integers.
extractColumns :: Element t => [Int] -> Matrix t -> Matrix t
extractColumns l m = m ?? (All, Pos (idxs l))
{- | creates matrix by repetition of a matrix a given number of rows and columns
>>> repmat (ident 2) 2 3
(4><6)
[ 1.0, 0.0, 1.0, 0.0, 1.0, 0.0
, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0
, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0
, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0 ]
-}
repmat :: (Element t) => Matrix t -> Int -> Int -> Matrix t
repmat m r c
| r == 0 || c == 0 = emptyM (r*rows m) (c*cols m)
| otherwise = fromBlocks $ replicate r $ replicate c $ m
-- | A version of 'liftMatrix2' which automatically adapt matrices with a single row or column to match the dimensions of the other matrix.
liftMatrix2Auto :: (Element t, Element a, Element b) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t
liftMatrix2Auto f m1 m2
| compat' m1 m2 = lM f m1 m2
| ok = lM f m1' m2'
| otherwise = error $ "nonconformable matrices in liftMatrix2Auto: " ++ shSize m1 ++ ", " ++ shSize m2
where
(r1,c1) = size m1
(r2,c2) = size m2
r = max r1 r2
c = max c1 c2
r0 = min r1 r2
c0 = min c1 c2
ok = r0 == 1 || r1 == r2 && c0 == 1 || c1 == c2
m1' = conformMTo (r,c) m1
m2' = conformMTo (r,c) m2
-- FIXME do not flatten if equal order
lM f m1 m2 = matrixFromVector
RowMajor
(max (rows m1) (rows m2))
(max (cols m1) (cols m2))
(f (flatten m1) (flatten m2))
compat' :: Matrix a -> Matrix b -> Bool
compat' m1 m2 = s1 == (1,1) || s2 == (1,1) || s1 == s2
where
s1 = size m1
s2 = size m2
------------------------------------------------------------
toBlockRows [r] m
| r == rows m = [m]
toBlockRows rs m
| cols m > 0 = map (reshape (cols m)) (takesV szs (flatten m))
| otherwise = map g rs
where
szs = map (* cols m) rs
g k = (k><0)[]
toBlockCols [c] m | c == cols m = [m]
toBlockCols cs m = map trans . toBlockRows cs . trans $ m
-- | Partition a matrix into blocks with the given numbers of rows and columns.
-- The remaining rows and columns are discarded.
toBlocks :: (Element t) => [Int] -> [Int] -> Matrix t -> [[Matrix t]]
toBlocks rs cs m
| ok = map (toBlockCols cs) . toBlockRows rs $ m
| otherwise = error $ "toBlocks: bad partition: "++show rs++" "++show cs
++ " "++shSize m
where
ok = sum rs <= rows m && sum cs <= cols m && all (>=0) rs && all (>=0) cs
-- | Fully partition a matrix into blocks of the same size. If the dimensions are not
-- a multiple of the given size the last blocks will be smaller.
toBlocksEvery :: (Element t) => Int -> Int -> Matrix t -> [[Matrix t]]
toBlocksEvery r c m
| r < 1 || c < 1 = error $ "toBlocksEvery expects block sizes > 0, given "++show r++" and "++ show c
| otherwise = toBlocks rs cs m
where
(qr,rr) = rows m `divMod` r
(qc,rc) = cols m `divMod` c
rs = replicate qr r ++ if rr > 0 then [rr] else []
cs = replicate qc c ++ if rc > 0 then [rc] else []
-------------------------------------------------------------------
-- Given a column number and a function taking matrix indexes, returns
-- a function which takes vector indexes (that can be used on the
-- flattened matrix).
mk :: Int -> ((Int, Int) -> t) -> (Int -> t)
mk c g = \k -> g (divMod k c)
{- |
>>> mapMatrixWithIndexM_ (\(i,j) v -> printf "m[%d,%d] = %.f\n" i j v :: IO()) ((2><3)[1 :: Double ..])
m[0,0] = 1
m[0,1] = 2
m[0,2] = 3
m[1,0] = 4
m[1,1] = 5
m[1,2] = 6
-}
mapMatrixWithIndexM_
:: (Element a, Num a, Monad m) =>
((Int, Int) -> a -> m ()) -> Matrix a -> m ()
mapMatrixWithIndexM_ g m = mapVectorWithIndexM_ (mk c g) . flatten $ m
where
c = cols m
{- |
>>> mapMatrixWithIndexM (\(i,j) v -> Just $ 100*v + 10*fromIntegral i + fromIntegral j) (ident 3:: Matrix Double)
Just (3><3)
[ 100.0, 1.0, 2.0
, 10.0, 111.0, 12.0
, 20.0, 21.0, 122.0 ]
-}
mapMatrixWithIndexM
:: (Element a, Storable b, Monad m) =>
((Int, Int) -> a -> m b) -> Matrix a -> m (Matrix b)
mapMatrixWithIndexM g m = liftM (reshape c) . mapVectorWithIndexM (mk c g) . flatten $ m
where
c = cols m
{- |
>>> mapMatrixWithIndex (\(i,j) v -> 100*v + 10*fromIntegral i + fromIntegral j) (ident 3:: Matrix Double)
(3><3)
[ 100.0, 1.0, 2.0
, 10.0, 111.0, 12.0
, 20.0, 21.0, 122.0 ]
-}
mapMatrixWithIndex
:: (Element a, Storable b) =>
((Int, Int) -> a -> b) -> Matrix a -> Matrix b
mapMatrixWithIndex g m = reshape c . mapVectorWithIndex (mk c g) . flatten $ m
where
c = cols m
mapMatrix :: (Storable a, Storable b) => (a -> b) -> Matrix a -> Matrix b
mapMatrix f = liftMatrix (mapVector f)
|