summaryrefslogtreecommitdiff
path: root/packages/base/src/Internal/Modular.hs
blob: 1116b96a484ea9ddb2b9a9dc2a8254ad3e34cff4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeFamilies #-}


{- |
Module      :  Internal.Modular
Copyright   :  (c) Alberto Ruiz 2015
License     :  BSD3
Stability   :  experimental

Proof of concept of statically checked modular arithmetic.

-}

module Internal.Modular(
    Mod, F
) where

import Internal.Vector
import Internal.Matrix hiding (mat,size)
import Internal.Numeric
import Internal.Element
import Internal.Tools
import Internal.Container
import Internal.Util(Indexable(..),gaussElim)
import GHC.TypeLits
import Data.Proxy(Proxy)
import Foreign.ForeignPtr(castForeignPtr)
import Data.Vector.Storable(fromList,unsafeToForeignPtr, unsafeFromForeignPtr)
import Foreign.Storable
import Data.Ratio



-- | Wrapper with a phantom integer for statically checked modular arithmetic.
newtype Mod (n :: Nat) t = Mod {unMod:: t}
  deriving (Storable)

instance KnownNat m => Enum (F m)
  where
    toEnum = l0 (\m x -> fromIntegral $ x `mod` (fromIntegral m))
    fromEnum = fromIntegral . unMod

instance KnownNat m => Eq (F m)
  where
    a == b = (unMod a) == (unMod b)

instance KnownNat m => Ord (F m)
  where
    compare a b = compare (unMod a) (unMod b)

instance KnownNat m => Real (F m)
  where
    toRational x = toInteger x % 1

instance KnownNat m => Integral (F m)
  where
    toInteger = toInteger . unMod
    quotRem a b = (Mod q, Mod r)
      where
         (q,r) = quotRem (unMod a) (unMod b)

-- | this instance is only valid for prime m
instance KnownNat m => Fractional (F m)
  where
    recip x
        | x*r == 1  = r
        | otherwise = error $ show x ++" does not have a multiplicative inverse mod "++show m'
      where
        r = x^(m'-2)
        m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int
    fromRational x = fromInteger (numerator x) / fromInteger (denominator x)

l2 :: forall m a b c. (KnownNat m) => (Int -> a -> b -> c) -> Mod m a -> Mod m b -> Mod m c
l2 f (Mod u) (Mod v) = Mod (f m' u v)
  where
    m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int

l1 :: forall m a b . (KnownNat m) => (Int -> a -> b) -> Mod m a -> Mod m b
l1 f (Mod u) = Mod (f m' u)
  where
    m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int

l0 :: forall m a b . (KnownNat m) => (Int -> a -> b) -> a -> Mod m b
l0 f u = Mod (f m' u)
  where
    m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int


instance Show (F n)
  where
    show = show . unMod

instance forall n . KnownNat n => Num (F n)
  where
    (+) = l2 (\m a b -> (a + b) `mod` (fromIntegral m))
    (*) = l2 (\m a b -> (a * b) `mod` (fromIntegral m))
    (-) = l2 (\m a b -> (a - b) `mod` (fromIntegral m))
    abs = l1 (const abs)
    signum = l1 (const signum)
    fromInteger = l0 (\m x -> fromInteger x `mod` (fromIntegral m))
    

-- | Integer modulo n
type F n = Mod n I

type V n = Vector (F n)
type M n = Matrix (F n)

  
instance Element (F n)
  where
    transdata n v m = i2f (transdata n (f2i v) m)
    constantD x n = i2f (constantD (unMod x) n)
    extractR m mi is mj js = i2fM (extractR (f2iM m) mi is mj js)
    sortI = sortI . f2i
    sortV = i2f . sortV . f2i
    compareV u v = compareV (f2i u) (f2i v)
    selectV c l e g = i2f (selectV c (f2i l) (f2i e) (f2i g))
    remapM i j m = i2fM (remap i j (f2iM m))

instance forall m . KnownNat m => Container Vector (F m)
  where
    conj' = id
    size' = dim
    scale' s x = fromInt (scale (unMod s) (toInt x))
    addConstant c x = fromInt (addConstant (unMod c) (toInt x))
    add a b = fromInt (add (toInt a) (toInt b))
    sub a b = fromInt (sub (toInt a) (toInt b))
    mul a b = fromInt (mul (toInt a) (toInt b))
    equal u v = equal (toInt u) (toInt v)
    scalar' x = fromList [x]
    konst' x = i2f . konst (unMod x)
    build' n f = build n (fromIntegral . f)
    cmap' = cmap
    atIndex' x k = fromIntegral (atIndex (toInt x) k)
    minIndex'     = minIndex . toInt
    maxIndex'     = maxIndex . toInt
    minElement'   = Mod . minElement . toInt
    maxElement'   = Mod . maxElement . toInt
    sumElements'  = fromIntegral . sumElements . toInt
    prodElements' = fromIntegral . sumElements . toInt
    step'         = i2f . step . toInt
    find' = findV
    assoc' = assocV
    accum' = accumV
    ccompare' a b = ccompare (toInt a) (toInt b)
    cselect' c l e g = i2f $ cselect c (toInt l) (toInt e) (toInt g)
    scaleRecip s x = scale' s (cmap recip x)
    divide x y = mul x (cmap recip y)
    arctan2' = undefined
    cmod' m = fromInt' . cmod' (unMod m) . toInt'
    fromInt' v = i2f $ cmod' (fromIntegral m') (fromInt' v)
      where
        m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int
    toInt'   = f2i


instance Indexable (Vector (F m)) (F m)
  where
    (!) = (@>)


type instance RealOf (F n) = I


instance KnownNat m => Product (F m) where
    norm2      = undefined
    absSum     = undefined
    norm1      = undefined
    normInf    = undefined
    multiply   = lift2 multiply


instance KnownNat m => Numeric (F m)

i2f :: Vector I -> Vector (F n)
i2f v = unsafeFromForeignPtr (castForeignPtr fp) (i) (n)
    where (fp,i,n) = unsafeToForeignPtr v

f2i :: Vector (F n) -> Vector I
f2i v = unsafeFromForeignPtr (castForeignPtr fp) (i) (n)
    where (fp,i,n) = unsafeToForeignPtr v

f2iM :: Matrix (F n) -> Matrix I
f2iM = liftMatrix f2i

i2fM :: Matrix I -> Matrix (F n)
i2fM = liftMatrix i2f


lift1 f a   = fromInt (f (toInt a))
lift2 f a b = fromInt (f (toInt a) (toInt b))

instance forall m . KnownNat m => Num (V m)
  where
    (+) = lift2 (+)
    (*) = lift2 (*)
    (-) = lift2 (-)
    abs = lift1 abs
    signum = lift1 signum
    negate = lift1 negate
    fromInteger x = fromInt (fromInteger x)


--------------------------------------------------------------------------------

instance (KnownNat m) => Testable (M m)
  where
    checkT _ = test

test = (ok, info)
  where
    v = fromList [3,-5,75] :: V 11
    m = (3><3) [1..]   :: M 11
    
    a = (3><3) [1,2 , 3
               ,4,5 , 6
               ,0,10,-3] :: Matrix I

    b = (3><2) [0..] :: Matrix I
    
    am = fromInt a :: Matrix (F 13)
    bm = fromInt b :: Matrix (F 13)
    ad = fromInt a :: Matrix Double
    bd = fromInt b :: Matrix Double
    
    info = do
        print v
        print m
        print (tr m)
        print $ v+v
        print $ m+m
        print $ m <> m
        print $ m #> v

        print $ am <> gaussElim am bm - bm
        print $ ad <> gaussElim ad bd - bd

    ok = and
      [ toInt (m #> v) == cmod 11 (toInt m #> toInt v )
      , am <> gaussElim am bm == bm
      ]