1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}
-----------------------------------------------------------------------------
-- |
-- Module : Numeric.Conversion
-- Copyright : (c) Alberto Ruiz 2010
-- License : BSD3
-- Maintainer : Alberto Ruiz
-- Stability : provisional
--
-- Conversion routines
--
-----------------------------------------------------------------------------
{-# OPTIONS_HADDOCK hide #-}
module Numeric.Conversion (
Complexable(..), RealElement,
module Data.Complex
) where
import Data.Packed.Internal.Vector
import Data.Packed.Internal.Matrix
import Data.Complex
import Control.Arrow((***))
-------------------------------------------------------------------
-- | Supported single-double precision type pairs
class (Element s, Element d) => Precision s d | s -> d, d -> s where
double2FloatG :: Vector d -> Vector s
float2DoubleG :: Vector s -> Vector d
instance Precision Float Double where
double2FloatG = double2FloatV
float2DoubleG = float2DoubleV
instance Precision (Complex Float) (Complex Double) where
double2FloatG = asComplex . double2FloatV . asReal
float2DoubleG = asComplex . float2DoubleV . asReal
-- | Supported real types
class (Element t, Element (Complex t), RealFloat t)
=> RealElement t
instance RealElement Double
instance RealElement Float
-- | Structures that may contain complex numbers
class Complexable c where
toComplex' :: (RealElement e) => (c e, c e) -> c (Complex e)
fromComplex' :: (RealElement e) => c (Complex e) -> (c e, c e)
comp' :: (RealElement e) => c e -> c (Complex e)
single' :: Precision a b => c b -> c a
double' :: Precision a b => c a -> c b
instance Complexable Vector where
toComplex' = toComplexV
fromComplex' = fromComplexV
comp' v = toComplex' (v,constantD 0 (dim v))
single' = double2FloatG
double' = float2DoubleG
-- | creates a complex vector from vectors with real and imaginary parts
toComplexV :: (RealElement a) => (Vector a, Vector a) -> Vector (Complex a)
toComplexV (r,i) = asComplex $ flatten $ fromColumns [r,i]
-- | the inverse of 'toComplex'
fromComplexV :: (RealElement a) => Vector (Complex a) -> (Vector a, Vector a)
fromComplexV z = (r,i) where
[r,i] = toColumns $ reshape 2 $ asReal z
instance Complexable Matrix where
toComplex' = uncurry $ liftMatrix2 $ curry toComplex'
fromComplex' z = (reshape c *** reshape c) . fromComplex' . flatten $ z
where c = cols z
comp' = liftMatrix comp'
single' = liftMatrix single'
double' = liftMatrix double'
|