1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
{-# LANGUAGE FlexibleContexts #-}
-----------------------------------------------------------------------------
{- |
Module : Numeric.LinearAlgebra
Copyright : (c) Alberto Ruiz 2006-15
License : BSD3
Maintainer : Alberto Ruiz
Stability : provisional
-}
-----------------------------------------------------------------------------
module Numeric.LinearAlgebra (
-- * Basic types and data manipulation
-- | This package works with 2D ('Matrix') and 1D ('Vector')
-- arrays of real ('R') or complex ('C') double precision numbers.
-- Single precision and machine integers are also supported for
-- basic arithmetic and data manipulation.
module Numeric.LinearAlgebra.Data,
-- * Numeric classes
-- |
-- The standard numeric classes are defined elementwise (commonly referred to
-- as the Hadamard product or the Schur product):
--
-- >>> vector [1,2,3] * vector [3,0,-2]
-- fromList [3.0,0.0,-6.0]
--
-- >>> matrix 3 [1..9] * ident 3
-- (3><3)
-- [ 1.0, 0.0, 0.0
-- , 0.0, 5.0, 0.0
-- , 0.0, 0.0, 9.0 ]
-- * Autoconformable dimensions
-- |
-- In most operations, single-element vectors and matrices
-- (created from numeric literals or using 'scalar'), and matrices
-- with just one row or column, automatically
-- expand to match the dimensions of the other operand:
--
-- >>> 5 + 2*ident 3 :: Matrix Double
-- (3><3)
-- [ 7.0, 5.0, 5.0
-- , 5.0, 7.0, 5.0
-- , 5.0, 5.0, 7.0 ]
--
-- >>> (4><3) [1..] + row [10,20,30]
-- (4><3)
-- [ 11.0, 22.0, 33.0
-- , 14.0, 25.0, 36.0
-- , 17.0, 28.0, 39.0
-- , 20.0, 31.0, 42.0 ]
--
-- * Products
-- ** Dot
dot, (<.>),
-- ** Matrix-vector
(#>), (<#), (!#>),
-- ** Matrix-matrix
(<>),
-- | The matrix product is also implemented in the "Data.Monoid" instance, where
-- single-element matrices (created from numeric literals or using 'scalar')
-- are used for scaling.
--
-- >>> import Data.Monoid as M
-- >>> let m = matrix 3 [1..6]
-- >>> m M.<> 2 M.<> diagl[0.5,1,0]
-- (2><3)
-- [ 1.0, 4.0, 0.0
-- , 4.0, 10.0, 0.0 ]
--
-- 'mconcat' uses 'optimiseMult' to get the optimal association order.
-- ** Other
outer, kronecker, cross,
scale, add,
sumElements, prodElements,
-- * Linear systems
-- ** General
(<\>),
linearSolveLS,
linearSolveSVD,
-- ** Determined
linearSolve,
luSolve, luPacked,
luSolve', luPacked',
-- ** Symmetric indefinite
ldlSolve, ldlPacked,
-- ** Positive definite
cholSolve,
-- ** Sparse
cgSolve,
cgSolve',
-- * Inverse and pseudoinverse
inv, pinv, pinvTol,
-- * Determinant and rank
rcond, rank,
det, invlndet,
-- * Norms
Normed(..),
norm_Frob, norm_nuclear,
-- * Nullspace and range
orth,
nullspace, null1, null1sym,
-- * Singular value decomposition
svd,
thinSVD,
compactSVD,
compactSVDTol,
singularValues,
leftSV, rightSV,
-- * Eigendecomposition
eig, eigSH,
eigenvalues, eigenvaluesSH,
geigSH,
-- * QR
qr, thinQR, rq, thinRQ, qrRaw, qrgr,
-- * Cholesky
chol, mbChol,
-- * LU
lu, luFact,
-- * Hessenberg
hess,
-- * Schur
schur,
-- * Matrix functions
expm,
sqrtm,
matFunc,
-- * Correlation and convolution
corr, conv, corrMin, corr2, conv2,
-- * Random arrays
Seed, RandDist(..), randomVector, rand, randn, gaussianSample, uniformSample,
-- * Misc
meanCov, rowOuters, pairwiseD2, normalize, peps, relativeError, magnit,
haussholder, optimiseMult, udot, nullspaceSVD, orthSVD, ranksv,
iC, sym, mTm, trustSym, unSym,
-- * Auxiliary classes
Element, Container, Product, Numeric, LSDiv, Herm,
Complexable, RealElement,
RealOf, ComplexOf, SingleOf, DoubleOf,
IndexOf,
Field, Linear(), Additive(),
Transposable,
LU(..),
LDL(..),
QR(..),
CGState(..),
Testable(..)
) where
import Numeric.LinearAlgebra.Data
import Numeric.Matrix()
import Numeric.Vector()
import Internal.Matrix
import Internal.Container hiding ((<>))
import Internal.Numeric hiding (mul)
import Internal.Algorithms hiding (linearSolve,Normed,orth,luPacked',linearSolve',luSolve',ldlPacked')
import qualified Internal.Algorithms as A
import Internal.Util
import Internal.Random
import Internal.Sparse((!#>))
import Internal.CG
import Internal.Conversion
{- | dense matrix product
>>> let a = (3><5) [1..]
>>> a
(3><5)
[ 1.0, 2.0, 3.0, 4.0, 5.0
, 6.0, 7.0, 8.0, 9.0, 10.0
, 11.0, 12.0, 13.0, 14.0, 15.0 ]
>>> let b = (5><2) [1,3, 0,2, -1,5, 7,7, 6,0]
>>> b
(5><2)
[ 1.0, 3.0
, 0.0, 2.0
, -1.0, 5.0
, 7.0, 7.0
, 6.0, 0.0 ]
>>> a <> b
(3><2)
[ 56.0, 50.0
, 121.0, 135.0
, 186.0, 220.0 ]
-}
(<>) :: Numeric t => Matrix t -> Matrix t -> Matrix t
(<>) = mXm
infixr 8 <>
{- | Solve a linear system (for square coefficient matrix and several right-hand sides) using the LU decomposition, returning Nothing for a singular system. For underconstrained or overconstrained systems use 'linearSolveLS' or 'linearSolveSVD'.
@
a = (2><2)
[ 1.0, 2.0
, 3.0, 5.0 ]
@
@
b = (2><3)
[ 6.0, 1.0, 10.0
, 15.0, 3.0, 26.0 ]
@
>>> linearSolve a b
Just (2><3)
[ -1.4802973661668753e-15, 0.9999999999999997, 1.999999999999997
, 3.000000000000001, 1.6653345369377348e-16, 4.000000000000002 ]
>>> let Just x = it
>>> disp 5 x
2x3
-0.00000 1.00000 2.00000
3.00000 0.00000 4.00000
>>> a <> x
(2><3)
[ 6.0, 1.0, 10.0
, 15.0, 3.0, 26.0 ]
-}
linearSolve m b = A.mbLinearSolve m b
-- | return an orthonormal basis of the null space of a matrix. See also 'nullspaceSVD'.
nullspace m = nullspaceSVD (Left (1*eps)) m (rightSV m)
-- | return an orthonormal basis of the range space of a matrix. See also 'orthSVD'.
orth m = orthSVD (Left (1*eps)) m (leftSV m)
|