1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
-----------------------------------------------------------------------------
{- |
Module : Numeric.LinearAlgebra
Copyright : (c) Alberto Ruiz 2006-14
License : BSD3
Maintainer : Alberto Ruiz
Stability : provisional
-}
-----------------------------------------------------------------------------
module Numeric.LinearAlgebra.Base (
-- * Basic types and data processing
module Numeric.LinearAlgebra.Data,
-- | The standard numeric classes are defined elementwise:
--
-- >>> fromList [1,2,3] * fromList [3,0,-2 :: Double]
-- fromList [3.0,0.0,-6.0]
--
-- >>> (3><3) [1..9] * ident 3 :: Matrix Double
-- (3><3)
-- [ 1.0, 0.0, 0.0
-- , 0.0, 5.0, 0.0
-- , 0.0, 0.0, 9.0 ]
--
-- In arithmetic operations single-element vectors and matrices
-- (created from numeric literals or using 'scalar') automatically
-- expand to match the dimensions of the other operand:
--
-- >>> 5 + 2*ident 3 :: Matrix Double
-- (3><3)
-- [ 7.0, 5.0, 5.0
-- , 5.0, 7.0, 5.0
-- , 5.0, 5.0, 7.0 ]
--
-- * Products
(<.>),
-- | The matrix product is also implemented in the "Data.Monoid" instance for Matrix, where
-- single-element matrices (created from numeric literals or using 'scalar')
-- are used for scaling.
--
-- >>> let m = (2><3)[1..] :: Matrix Double
-- >>> m <> 2 <> diagl[0.5,1,0]
-- (2><3)
-- [ 1.0, 4.0, 0.0
-- , 4.0, 10.0, 0.0 ]
--
-- mconcat uses 'optimiseMult' to get the optimal association order.
(◇),
outer, kronecker, cross,
scale,
sumElements, prodElements, absSum,
-- * Linear Systems
(<\>),
linearSolve,
linearSolveLS,
linearSolveSVD,
luSolve,
cholSolve,
-- * Inverse and pseudoinverse
inv, pinv, pinvTol,
-- * Determinant and rank
rcond, rank, ranksv,
det, invlndet,
-- * Singular value decomposition
svd,
fullSVD,
thinSVD,
compactSVD,
singularValues,
leftSV, rightSV,
-- * Eigensystems
eig, eigSH, eigSH',
eigenvalues, eigenvaluesSH, eigenvaluesSH',
geigSH',
-- * QR
qr, rq, qrRaw, qrgr,
-- * Cholesky
chol, cholSH, mbCholSH,
-- * Hessenberg
hess,
-- * Schur
schur,
-- * LU
lu, luPacked,
-- * Matrix functions
expm,
sqrtm,
matFunc,
-- * Nullspace
nullspacePrec,
nullVector,
nullspaceSVD,
null1, null1sym,
orth,
-- * Norms
norm1, norm2, normInf, pnorm, NormType(..),
-- * Correlation and Convolution
corr, conv, corrMin, corr2, conv2,
-- * Random arrays
-- | rand, randn, RandDist(..), randomVector, gaussianSample, uniformSample
-- * Misc
meanCov, peps, relativeError, haussholder, optimiseMult, udot
) where
import Numeric.LinearAlgebra.Data
import Numeric.Matrix()
import Numeric.Vector()
import Numeric.Container
import Numeric.LinearAlgebra.Algorithms
import Numeric.LinearAlgebra.Util
|