blob: 936c777d14ffc46bdebf46c082856a87cb6a2f3b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
-----------------------------------------------------------------------------
-- |
-- Module : Numeric.Random
-- Copyright : (c) Alberto Ruiz 2009-14
-- License : GPL
--
-- Maintainer : Alberto Ruiz
-- Stability : provisional
--
-- Random vectors and matrices.
--
-----------------------------------------------------------------------------
module Numeric.Random (
Seed,
RandDist(..),
randomVector,
gaussianSample,
uniformSample
) where
import Numeric.GSL.Vector
import Data.Packed
import Numeric.ContainerBoot
import Numeric.LinearAlgebra.Algorithms
type Seed = Int
-- | Obtains a matrix whose rows are pseudorandom samples from a multivariate
-- Gaussian distribution.
gaussianSample :: Seed
-> Int -- ^ number of rows
-> Vector Double -- ^ mean vector
-> Matrix Double -- ^ covariance matrix
-> Matrix Double -- ^ result
gaussianSample seed n med cov = m where
c = dim med
meds = konst' 1 n `outer` med
rs = reshape c $ randomVector seed Gaussian (c * n)
m = rs `mXm` cholSH cov `add` meds
-- | Obtains a matrix whose rows are pseudorandom samples from a multivariate
-- uniform distribution.
uniformSample :: Seed
-> Int -- ^ number of rows
-> [(Double,Double)] -- ^ ranges for each column
-> Matrix Double -- ^ result
uniformSample seed n rgs = m where
(as,bs) = unzip rgs
a = fromList as
cs = zipWith subtract as bs
d = dim a
dat = toRows $ reshape n $ randomVector seed Uniform (n*d)
am = konst' 1 n `outer` a
m = fromColumns (zipWith scale cs dat) `add` am
|