1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
|
{-# OPTIONS_GHC -Wall #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}
-----------------------------------------------------------------------------
-- |
-- Module : Numeric.Sundials.ARKode
-- Copyright : Dominic Steinitz 2018,
-- Novadiscovery 2018
-- License : BSD
-- Maintainer : Dominic Steinitz
-- Stability : provisional
--
-- Solution of ordinary differential equation (ODE) initial value problems.
--
-- <https://computation.llnl.gov/projects/sundials/sundials-software>
--
-- A simple example:
--
-- @
-- import Numeric.Sundials.ARKode
-- import Numeric.LinearAlgebra
-- import Graphics.Plot(mplot)
--
-- xdot t [x,v] = [v, -0.95*x - 0.1*v]
--
-- ts = linspace 100 (0,20 :: Double)
--
-- sol = odeSolve xdot [10,0] ts
--
-- main = mplot (ts : toColumns sol)
-- @
--
-- KVAERNO_4_2_3
--
-- \[
-- \begin{array}{c|cccc}
-- c_1 & 0.0 & 0.0 & 0.0 & 0.0 \\
-- c_2 & 0.4358665215 & 0.4358665215 & 0.0 & 0.0 \\
-- c_3 & 0.490563388419108 & 7.3570090080892e-2 & 0.4358665215 & 0.0 \\
-- c_4 & 0.308809969973036 & 1.490563388254106 & -1.235239879727145 & 0.4358665215 \\
-- \end{array}
-- \]
--
-- SDIRK_2_1_2
--
-- \[
-- \begin{array}{c|cc}
-- c_1 & 1.0 & 0.0 \\
-- c_2 & -1.0 & 1.0 \\
-- \end{array}
-- \]
--
-- SDIRK_5_3_4
--
-- \[
-- \begin{array}{c|ccccc}
-- c_1 & 0.25 & 0.0 & 0.0 & 0.0 & 0.0 \\
-- c_2 & 0.5 & 0.25 & 0.0 & 0.0 & 0.0 \\
-- c_3 & 0.34 & -4.0e-2 & 0.25 & 0.0 & 0.0 \\
-- c_4 & 0.2727941176470588 & -5.036764705882353e-2 & 2.7573529411764705e-2 & 0.25 & 0.0 \\
-- c_5 & 1.0416666666666667 & -1.0208333333333333 & 7.8125 & -7.083333333333333 & 0.25 \\
-- \end{array}
-- \]
-----------------------------------------------------------------------------
module Numeric.Sundials.ARKode.ODE ( odeSolve
, odeSolveV
, odeSolveVWith
, odeSolve'
, getButcherTable
, getBT
, btGet
, ODEMethod(..)
, StepControl(..)
) where
import qualified Language.C.Inline as C
import qualified Language.C.Inline.Unsafe as CU
import Data.Monoid ((<>))
import Data.Maybe (isJust)
import Foreign.C.Types
import Foreign.Ptr (Ptr)
import Foreign.ForeignPtr (newForeignPtr_)
import Foreign.Storable (Storable)
import qualified Data.Vector.Storable as V
import qualified Data.Vector.Storable.Mutable as VM
import Data.Coerce (coerce)
import System.IO.Unsafe (unsafePerformIO)
import Numeric.LinearAlgebra.Devel (createVector)
import Numeric.LinearAlgebra.HMatrix (Vector, Matrix, toList, (><),
subMatrix, rows, cols, toLists)
import qualified Types as T
import Arkode (sDIRK_2_1_2, kVAERNO_4_2_3, sDIRK_5_3_4)
import qualified Arkode as B
import Debug.Trace
C.context (C.baseCtx <> C.vecCtx <> C.funCtx <> T.sunCtx)
C.include "<stdlib.h>"
C.include "<stdio.h>"
C.include "<math.h>"
C.include "<arkode/arkode.h>" -- prototypes for ARKODE fcts., consts.
C.include "<nvector/nvector_serial.h>" -- serial N_Vector types, fcts., macros
C.include "<sunmatrix/sunmatrix_dense.h>" -- access to dense SUNMatrix
C.include "<sunlinsol/sunlinsol_dense.h>" -- access to dense SUNLinearSolver
C.include "<arkode/arkode_direct.h>" -- access to ARKDls interface
C.include "<sundials/sundials_types.h>" -- definition of type realtype
C.include "<sundials/sundials_math.h>"
C.include "../../../helpers.h"
C.include "Arkode_hsc.h"
getDataFromContents :: Int -> Ptr T.SunVector -> IO (V.Vector CDouble)
getDataFromContents len ptr = do
qtr <- B.getContentPtr ptr
rtr <- B.getData qtr
vectorFromC len rtr
-- FIXME: Potentially an instance of Storable
_getMatrixDataFromContents :: Ptr T.SunMatrix -> IO T.SunMatrix
_getMatrixDataFromContents ptr = do
qtr <- B.getContentMatrixPtr ptr
rs <- B.getNRows qtr
cs <- B.getNCols qtr
rtr <- B.getMatrixData qtr
vs <- vectorFromC (fromIntegral $ rs * cs) rtr
return $ T.SunMatrix { T.rows = rs, T.cols = cs, T.vals = vs }
putMatrixDataFromContents :: T.SunMatrix -> Ptr T.SunMatrix -> IO ()
putMatrixDataFromContents mat ptr = do
let rs = T.rows mat
cs = T.cols mat
vs = T.vals mat
qtr <- B.getContentMatrixPtr ptr
B.putNRows rs qtr
B.putNCols cs qtr
rtr <- B.getMatrixData qtr
vectorToC vs (fromIntegral $ rs * cs) rtr
-- FIXME: END
putDataInContents :: Storable a => V.Vector a -> Int -> Ptr b -> IO ()
putDataInContents vec len ptr = do
qtr <- B.getContentPtr ptr
rtr <- B.getData qtr
vectorToC vec len rtr
-- Utils
vectorFromC :: Storable a => Int -> Ptr a -> IO (V.Vector a)
vectorFromC len ptr = do
ptr' <- newForeignPtr_ ptr
V.freeze $ VM.unsafeFromForeignPtr0 ptr' len
vectorToC :: Storable a => V.Vector a -> Int -> Ptr a -> IO ()
vectorToC vec len ptr = do
ptr' <- newForeignPtr_ ptr
V.copy (VM.unsafeFromForeignPtr0 ptr' len) vec
data SundialsDiagnostics = SundialsDiagnostics {
_aRKodeGetNumSteps :: Int
, _aRKodeGetNumStepAttempts :: Int
, _aRKodeGetNumRhsEvals_fe :: Int
, _aRKodeGetNumRhsEvals_fi :: Int
, _aRKodeGetNumLinSolvSetups :: Int
, _aRKodeGetNumErrTestFails :: Int
, _aRKodeGetNumNonlinSolvIters :: Int
, _aRKodeGetNumNonlinSolvConvFails :: Int
, _aRKDlsGetNumJacEvals :: Int
, _aRKDlsGetNumRhsEvals :: Int
} deriving Show
type Jacobian = Double -> Vector Double -> Matrix Double
-- | Stepping functions
data ODEMethod = SDIRK_2_1_2 Jacobian
| KVAERNO_4_2_3 Jacobian
| SDIRK_5_3_4 Jacobian
getMethod :: ODEMethod -> Int
getMethod (SDIRK_2_1_2 _) = sDIRK_2_1_2
getMethod (KVAERNO_4_2_3 _) = kVAERNO_4_2_3
getMethod (SDIRK_5_3_4 _) = sDIRK_5_3_4
-- | A version of 'odeSolveVWith' with reasonable default step control.
odeSolveV
:: ODEMethod
-> Double -- ^ initial step size
-> Double -- ^ absolute tolerance for the state vector
-> Double -- ^ relative tolerance for the state vector
-> (Double -> Vector Double -> Vector Double) -- ^ x'(t,x)
-> Vector Double -- ^ initial conditions
-> Vector Double -- ^ desired solution times
-> Matrix Double -- ^ solution
odeSolveV _meth _hi _epsAbs _epsRel = undefined
-- | A version of 'odeSolveV' with reasonable default parameters and
-- system of equations defined using lists. FIXME: we should say
-- something about the fact we could use the Jacobian but don't for
-- compatibility with hmatrix-gsl.
odeSolve :: (Double -> [Double] -> [Double]) -- ^ The RHS of the system \(\dot{y} = f(t,y)\)
-> [Double] -- ^ initial conditions
-> Vector Double -- ^ desired solution times
-> Matrix Double -- ^ solution
odeSolve f y0 ts =
case odeSolveVWith (SDIRK_5_3_4 undefined) Nothing 1.0e-6 1.0e-10 g (V.fromList y0) (V.fromList $ toList ts) of
Left c -> error $ show c -- FIXME
Right (v, d) -> trace (show d) $ (nR >< nC) (V.toList v)
where
us = toList ts
nR = length us
nC = length y0
g t x0 = V.fromList $ f t (V.toList x0)
odeSolve' :: ODEMethod
-> (Double -> Vector Double -> Matrix Double)
-> (Double -> [Double] -> [Double]) -- ^ The RHS of the system \(\dot{y} = f(t,y)\)
-> [Double] -- ^ initial conditions
-> Vector Double -- ^ desired solution times
-> Matrix Double -- ^ solution
odeSolve' method jac f y0 ts =
case odeSolveVWith method (pure jac') 1.0e-6 1.0e-10 g (V.fromList y0) (V.fromList $ toList ts) of
Left c -> error $ show c -- FIXME
Right (v, d) -> trace (show d) $ (nR >< nC) (V.toList v)
where
us = toList ts
nR = length us
nC = length y0
g t x0 = V.fromList $ f t (V.toList x0)
jac' t v = foo $ jac t (V.fromList $ toList v)
foo m = T.SunMatrix { T.rows = nr, T.cols = nc, T.vals = vs }
where
nr = fromIntegral $ rows m
nc = fromIntegral $ cols m
vs = V.fromList $ map coerce $ concat $ toLists m
odeSolveVWith ::
ODEMethod
-> (Maybe (Double -> V.Vector Double -> T.SunMatrix))
-> Double
-> Double
-> (Double -> V.Vector Double -> V.Vector Double) -- ^ The RHS of the system \(\dot{y} = f(t,y)\)
-> V.Vector Double -- ^ Initial conditions
-> V.Vector Double -- ^ Desired solution times
-> Either Int ((V.Vector Double), SundialsDiagnostics) -- ^ Error code or solution
odeSolveVWith method jac relTol absTol f y0 tt =
case solveOdeC (fromIntegral $ getMethod method) jacH (CDouble relTol) (CDouble absTol)
(coerce f) (coerce y0) (coerce tt) of
Left c -> Left $ fromIntegral c
Right (v, d) -> Right (coerce v, d)
where
jacH :: Maybe (CDouble -> V.Vector CDouble -> T.SunMatrix)
jacH = fmap (\g -> (\t v -> g (coerce t) (coerce v))) jac
solveOdeC ::
CInt ->
(Maybe (CDouble -> V.Vector CDouble -> T.SunMatrix)) ->
CDouble ->
CDouble ->
(CDouble -> V.Vector CDouble -> V.Vector CDouble) -- ^ The RHS of the system \(\dot{y} = f(t,y)\)
-> V.Vector CDouble -- ^ Initial conditions
-> V.Vector CDouble -- ^ Desired solution times
-> Either CInt ((V.Vector CDouble), SundialsDiagnostics) -- ^ Error code or solution
solveOdeC method jacH relTol absTol fun f0 ts = unsafePerformIO $ do
let dim = V.length f0
nEq :: CLong
nEq = fromIntegral dim
nTs :: CInt
nTs = fromIntegral $ V.length ts
-- FIXME: fMut is not actually mutatated
fMut <- V.thaw f0
tMut <- V.thaw ts
-- FIXME: I believe this gets taken from the ghc heap and so should
-- be subject to garbage collection.
quasiMatrixRes <- createVector ((fromIntegral dim) * (fromIntegral nTs))
qMatMut <- V.thaw quasiMatrixRes
diagnostics :: V.Vector CLong <- createVector 10 -- FIXME
diagMut <- V.thaw diagnostics
-- We need the types that sundials expects. These are tied together
-- in 'Types'. FIXME: The Haskell type is currently empty!
let funIO :: CDouble -> Ptr T.SunVector -> Ptr T.SunVector -> Ptr () -> IO CInt
funIO x y f _ptr = do
-- Convert the pointer we get from C (y) to a vector, and then
-- apply the user-supplied function.
fImm <- fun x <$> getDataFromContents dim y
-- Fill in the provided pointer with the resulting vector.
putDataInContents fImm dim f
-- FIXME: I don't understand what this comment means
-- Unsafe since the function will be called many times.
[CU.exp| int{ 0 } |]
let isJac :: CInt
isJac = fromIntegral $ fromEnum $ isJust jacH
jacIO :: CDouble -> Ptr T.SunVector -> Ptr T.SunVector -> Ptr T.SunMatrix ->
Ptr () -> Ptr T.SunVector -> Ptr T.SunVector -> Ptr T.SunVector ->
IO CInt
jacIO t y _fy jacS _ptr _tmp1 _tmp2 _tmp3 = do
case jacH of
Nothing -> error "Numeric.Sundials.ARKode.ODE: Jacobian not defined"
Just jacI -> do j <- jacI t <$> getDataFromContents dim y
putMatrixDataFromContents j jacS
-- FIXME: I don't understand what this comment means
-- Unsafe since the function will be called many times.
[CU.exp| int{ 0 } |]
res <- [C.block| int {
/* general problem variables */
int flag; /* reusable error-checking flag */
N_Vector y = NULL; /* empty vector for storing solution */
SUNMatrix A = NULL; /* empty matrix for linear solver */
SUNLinearSolver LS = NULL; /* empty linear solver object */
void *arkode_mem = NULL; /* empty ARKode memory structure */
realtype t;
long int nst, nst_a, nfe, nfi, nsetups, nje, nfeLS, nni, ncfn, netf;
/* general problem parameters */
realtype T0 = RCONST(($vec-ptr:(double *tMut))[0]); /* initial time */
sunindextype NEQ = $(sunindextype nEq); /* number of dependent vars. */
/* Initialize data structures */
y = N_VNew_Serial(NEQ); /* Create serial vector for solution */
if (check_flag((void *)y, "N_VNew_Serial", 0)) return 1;
int i, j;
for (i = 0; i < NEQ; i++) {
NV_Ith_S(y,i) = ($vec-ptr:(double *fMut))[i];
}; /* Specify initial condition */
arkode_mem = ARKodeCreate(); /* Create the solver memory */
if (check_flag((void *)arkode_mem, "ARKodeCreate", 0)) return 1;
/* Call ARKodeInit to initialize the integrator memory and specify the */
/* right-hand side function in y'=f(t,y), the inital time T0, and */
/* the initial dependent variable vector y. Note: since this */
/* problem is fully implicit, we set f_E to NULL and f_I to f. */
/* Here we use the C types defined in helpers.h which tie up with */
/* the Haskell types defined in Types */
flag = ARKodeInit(arkode_mem, NULL, $fun:(int (* funIO) (double t, SunVector y[], SunVector dydt[], void * params)), T0, y);
if (check_flag(&flag, "ARKodeInit", 1)) return 1;
/* Set routines */
flag = ARKodeSStolerances(arkode_mem, $(double relTol), $(double absTol));
if (check_flag(&flag, "ARKodeSStolerances", 1)) return 1;
/* Initialize dense matrix data structure and solver */
A = SUNDenseMatrix(NEQ, NEQ);
if (check_flag((void *)A, "SUNDenseMatrix", 0)) return 1;
LS = SUNDenseLinearSolver(y, A);
if (check_flag((void *)LS, "SUNDenseLinearSolver", 0)) return 1;
/* Linear solver interface */
flag = ARKDlsSetLinearSolver(arkode_mem, LS, A); /* Attach matrix and linear solver */
if ($(int isJac)) {
flag = ARKDlsSetJacFn(arkode_mem, $fun:(int (* jacIO) (double t, SunVector y[], SunVector fy[], SunMatrix Jac[], void * params, SunVector tmp1[], SunVector tmp2[], SunVector tmp3[])));
if (check_flag(&flag, "ARKDlsSetJacFn", 1)) return 1;
}
/* Store initial conditions */
for (j = 0; j < NEQ; j++) {
($vec-ptr:(double *qMatMut))[0 * $(int nTs) + j] = NV_Ith_S(y,j);
}
flag = ARKodeSetIRKTableNum(arkode_mem, $(int method));
if (check_flag(&flag, "ARKode", 1)) return 1;
/* Main time-stepping loop: calls ARKode to perform the integration */
/* Stops when the final time has been reached */
for (i = 1; i < $(int nTs); i++) {
flag = ARKode(arkode_mem, ($vec-ptr:(double *tMut))[i], y, &t, ARK_NORMAL); /* call integrator */
if (check_flag(&flag, "ARKode", 1)) break;
/* Store the results for Haskell */
for (j = 0; j < NEQ; j++) {
($vec-ptr:(double *qMatMut))[i * NEQ + j] = NV_Ith_S(y,j);
}
if (flag < 0) { /* unsuccessful solve: break */
fprintf(stderr,"Solver failure, stopping integration\n");
break;
}
}
/* Get some final statistics on how the solve progressed */
flag = ARKodeGetNumSteps(arkode_mem, &nst);
check_flag(&flag, "ARKodeGetNumSteps", 1);
($vec-ptr:(long int *diagMut))[0] = nst;
flag = ARKodeGetNumStepAttempts(arkode_mem, &nst_a);
check_flag(&flag, "ARKodeGetNumStepAttempts", 1);
($vec-ptr:(long int *diagMut))[1] = nst_a;
flag = ARKodeGetNumRhsEvals(arkode_mem, &nfe, &nfi);
check_flag(&flag, "ARKodeGetNumRhsEvals", 1);
($vec-ptr:(long int *diagMut))[2] = nfe;
($vec-ptr:(long int *diagMut))[3] = nfi;
flag = ARKodeGetNumLinSolvSetups(arkode_mem, &nsetups);
check_flag(&flag, "ARKodeGetNumLinSolvSetups", 1);
($vec-ptr:(long int *diagMut))[4] = nsetups;
flag = ARKodeGetNumErrTestFails(arkode_mem, &netf);
check_flag(&flag, "ARKodeGetNumErrTestFails", 1);
($vec-ptr:(long int *diagMut))[5] = netf;
flag = ARKodeGetNumNonlinSolvIters(arkode_mem, &nni);
check_flag(&flag, "ARKodeGetNumNonlinSolvIters", 1);
($vec-ptr:(long int *diagMut))[6] = nni;
flag = ARKodeGetNumNonlinSolvConvFails(arkode_mem, &ncfn);
check_flag(&flag, "ARKodeGetNumNonlinSolvConvFails", 1);
($vec-ptr:(long int *diagMut))[7] = ncfn;
flag = ARKDlsGetNumJacEvals(arkode_mem, &nje);
check_flag(&flag, "ARKDlsGetNumJacEvals", 1);
($vec-ptr:(long int *diagMut))[8] = ncfn;
flag = ARKDlsGetNumRhsEvals(arkode_mem, &nfeLS);
check_flag(&flag, "ARKDlsGetNumRhsEvals", 1);
($vec-ptr:(long int *diagMut))[9] = ncfn;
/* Clean up and return */
N_VDestroy(y); /* Free y vector */
ARKodeFree(&arkode_mem); /* Free integrator memory */
SUNLinSolFree(LS); /* Free linear solver */
SUNMatDestroy(A); /* Free A matrix */
return flag;
} |]
if res == 0
then do
preD <- V.freeze diagMut
let d = SundialsDiagnostics (fromIntegral $ preD V.!0)
(fromIntegral $ preD V.!1)
(fromIntegral $ preD V.!2)
(fromIntegral $ preD V.!3)
(fromIntegral $ preD V.!4)
(fromIntegral $ preD V.!5)
(fromIntegral $ preD V.!6)
(fromIntegral $ preD V.!7)
(fromIntegral $ preD V.!8)
(fromIntegral $ preD V.!9)
m <- V.freeze qMatMut
return $ Right (m, d)
else do
return $ Left res
btGet :: ODEMethod -> Matrix Double
btGet method = case getBT method of
Left c -> error $ show c -- FIXME
Right (v, sqp) -> subMatrix (0, 0) (s, s) $
(B.arkSMax >< B.arkSMax) (V.toList v)
where
s = fromIntegral $ sqp V.! 0
getBT :: ODEMethod -> Either Int (V.Vector Double, V.Vector Int)
getBT method = case getButcherTable method of
Left c -> Left $ fromIntegral c
Right (v, sqp) -> Right $ (coerce v, V.map fromIntegral sqp)
getButcherTable :: ODEMethod -> Either CInt ((V.Vector CDouble), V.Vector CInt)
getButcherTable method = unsafePerformIO $ do
-- arkode seems to want an ODE in order to set and then get the
-- Butcher tableau so here's one to keep it happy
let fun :: CDouble -> V.Vector CDouble -> V.Vector CDouble
fun _t ys = V.fromList [ ys V.! 0 ]
f0 = V.fromList [ 1.0 ]
ts = V.fromList [ 0.0 ]
dim = V.length f0
nEq :: CLong
nEq = fromIntegral dim
mN :: CInt
mN = fromIntegral $ getMethod method
-- FIXME: I believe these gets taken from the ghc heap and so should
-- be subject to garbage collection.
btSQP :: V.Vector CInt <- createVector 3
btSQPMut <- V.thaw btSQP
btAs :: V.Vector CDouble <- createVector (B.arkSMax * B.arkSMax)
btAsMut <- V.thaw btAs
-- We need the types that sundials expects. These are tied together
-- in 'Types'. FIXME: The Haskell type is currently empty!
let funIO :: CDouble -> Ptr T.SunVector -> Ptr T.SunVector -> Ptr () -> IO CInt
funIO x y f _ptr = do
-- Convert the pointer we get from C (y) to a vector, and then
-- apply the user-supplied function.
fImm <- fun x <$> getDataFromContents dim y
-- Fill in the provided pointer with the resulting vector.
putDataInContents fImm dim f
-- I don't understand what this comment means
-- Unsafe since the function will be called many times.
[CU.exp| int{ 0 } |]
res <- [C.block| int {
/* general problem variables */
int flag; /* reusable error-checking flag */
N_Vector y = NULL; /* empty vector for storing solution */
void *arkode_mem = NULL; /* empty ARKode memory structure */
/* general problem parameters */
/* initial time */
realtype T0 = RCONST(($vec-ptr:(double *ts))[0]);
/* number of dependent vars. */
sunindextype NEQ = $(sunindextype nEq);
/* Initialize data structures */
y = N_VNew_Serial(NEQ); /* Create serial vector for solution */
if (check_flag((void *)y, "N_VNew_Serial", 0)) return 1;
/* Specify initial condition */
int i, j;
for (i = 0; i < NEQ; i++) {
NV_Ith_S(y,i) = ($vec-ptr:(double *f0))[i];
};
arkode_mem = ARKodeCreate(); /* Create the solver memory */
if (check_flag((void *)arkode_mem, "ARKodeCreate", 0)) return 1;
flag = ARKodeInit(arkode_mem, NULL, $fun:(int (* funIO) (double t, SunVector y[], SunVector dydt[], void * params)), T0, y);
if (check_flag(&flag, "ARKodeInit", 1)) return 1;
flag = ARKodeSetIRKTableNum(arkode_mem, $(int mN));
if (check_flag(&flag, "ARKode", 1)) return 1;
int s, q, p;
realtype *ai = (realtype *)malloc(ARK_S_MAX * ARK_S_MAX * sizeof(realtype));
realtype *ae = (realtype *)malloc(ARK_S_MAX * ARK_S_MAX * sizeof(realtype));
realtype *ci = (realtype *)malloc(ARK_S_MAX * sizeof(realtype));
realtype *ce = (realtype *)malloc(ARK_S_MAX * sizeof(realtype));
realtype *bi = (realtype *)malloc(ARK_S_MAX * sizeof(realtype));
realtype *be = (realtype *)malloc(ARK_S_MAX * sizeof(realtype));
realtype *b2i = (realtype *)malloc(ARK_S_MAX * sizeof(realtype));
realtype *b2e = (realtype *)malloc(ARK_S_MAX * sizeof(realtype));
flag = ARKodeGetCurrentButcherTables(arkode_mem, &s, &q, &p, ai, ae, ci, ce, bi, be, b2i, b2e);
if (check_flag(&flag, "ARKode", 1)) return 1;
$vec-ptr:(int *btSQPMut)[0] = s;
$vec-ptr:(int *btSQPMut)[1] = q;
$vec-ptr:(int *btSQPMut)[2] = p;
for (i = 0; i < s; i++) {
for (j = 0; j < s; j++) {
/* FIXME: double should be realtype */
($vec-ptr:(double *btAsMut))[i * ARK_S_MAX + j] = ai[i * ARK_S_MAX + j];
}
}
/* Clean up and return */
N_VDestroy(y); /* Free y vector */
ARKodeFree(&arkode_mem); /* Free integrator memory */
return flag;
} |]
if res == 0
then do
x <- V.freeze btAsMut
y <- V.freeze btSQPMut
return $ Right (x, y)
else do
return $ Left res
-- | Adaptive step-size control functions. FIXME: It may not be
-- possible to scale the tolerances for the derivatives in sundials so
-- for now we ignore them and emit a warning.
data StepControl = X Double Double -- ^ abs. and rel. tolerance for x(t)
| X' Double Double -- ^ abs. and rel. tolerance for x'(t)
| XX' Double Double Double Double -- ^ include both via rel. tolerance scaling factors a_x, a_x'
| ScXX' Double Double Double Double (Vector Double) -- ^ scale abs. tolerance of x(t) components
|