1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
|
{-# LANGUAGE CPP #-}
{-# OPTIONS_GHC -fno-warn-unused-imports -fno-warn-incomplete-patterns #-}
-----------------------------------------------------------------------------
{- |
Module : Numeric.LinearAlgebra.Tests
Copyright : (c) Alberto Ruiz 2007-11
License : GPL-style
Maintainer : Alberto Ruiz (aruiz at um dot es)
Stability : provisional
Portability : portable
Some tests.
-}
module Numeric.LinearAlgebra.Tests(
-- module Numeric.LinearAlgebra.Tests.Instances,
-- module Numeric.LinearAlgebra.Tests.Properties,
-- qCheck,
runTests,
runBenchmarks
-- , findNaN
--, runBigTests
) where
--import Data.Packed.Random
import Numeric.LinearAlgebra.Compat
import Numeric.LinearAlgebra.Util(row,col)
import Data.Packed
import Numeric.LinearAlgebra.LAPACK
import Numeric.LinearAlgebra.Tests.Instances
import Numeric.LinearAlgebra.Tests.Properties
import Test.HUnit hiding ((~:),test,Testable,State)
import System.Info
import Data.List(foldl1')
import Numeric.GSL
import Prelude hiding ((^))
import qualified Prelude
import System.CPUTime
import System.Exit
import Text.Printf
import Data.Packed.Development(unsafeFromForeignPtr,unsafeToForeignPtr)
import Control.Arrow((***))
import Debug.Trace
import Control.Monad(when)
import Numeric.LinearAlgebra.Util hiding (ones,row,col)
import Control.Applicative
import Control.Monad(ap)
import Data.Packed.ST
import Test.QuickCheck(Arbitrary,arbitrary,coarbitrary,choose,vector
,sized,classify,Testable,Property
,quickCheckWithResult,maxSize,stdArgs,shrink)
import Test.QuickCheck.Test(isSuccess)
qCheck n x = do
r <- quickCheckWithResult stdArgs {maxSize = n} x
when (not $ isSuccess r) (exitFailure)
a ^ b = a Prelude.^ (b :: Int)
utest str b = TestCase $ assertBool str b
a ~~ b = fromList a |~| fromList b
feye n = flipud (ident n) :: Matrix Double
-----------------------------------------------------------
detTest1 = det m == 26
&& det mc == 38 :+ (-3)
&& det (feye 2) == -1
where
m = (3><3)
[ 1, 2, 3
, 4, 5, 7
, 2, 8, 4 :: Double
]
mc = (3><3)
[ 1, 2, 3
, 4, 5, 7
, 2, 8, i
]
detTest2 = inv1 |~| inv2 && [det1] ~~ [det2]
where
m = complex (feye 6)
inv1 = inv m
det1 = det m
(inv2,(lda,sa)) = invlndet m
det2 = sa * exp lda
--------------------------------------------------------------------
polyEval cs x = foldr (\c ac->ac*x+c) 0 cs
polySolveProp p = length p <2 || last p == 0|| 1E-8 > maximum (map magnitude $ map (polyEval (map (:+0) p)) (polySolve p))
---------------------------------------------------------------------
quad f a b = fst $ integrateQAGS 1E-9 100 f a b
-- A multiple integral can be easily defined using partial application
quad2 f a b g1 g2 = quad h a b
where h x = quad (f x) (g1 x) (g2 x)
volSphere r = 8 * quad2 (\x y -> sqrt (r*r-x*x-y*y))
0 r (const 0) (\x->sqrt (r*r-x*x))
---------------------------------------------------------------------
derivTest = abs (d (\x-> x * d (\y-> x+y) 1) 1 - 1) < 1E-10
where d f x = fst $ derivCentral 0.01 f x
---------------------------------------------------------------------
-- besselTest = utest "bessel_J0_e" ( abs (r-expected) < e )
-- where (r,e) = bessel_J0_e 5.0
-- expected = -0.17759677131433830434739701
-- exponentialTest = utest "exp_e10_e" ( abs (v*10^e - expected) < 4E-2 )
-- where (v,e,_err) = exp_e10_e 30.0
-- expected = exp 30.0
---------------------------------------------------------------------
nd1 = (3><3) [ 1/2, 1/4, 1/4
, 0/1, 1/2, 1/4
, 1/2, 1/4, 1/2 :: Double]
nd2 = (2><2) [1, 0, 1, 1:: Complex Double]
expmTest1 = expm nd1 :~14~: (3><3)
[ 1.762110887278176
, 0.478085470590435
, 0.478085470590435
, 0.104719410945666
, 1.709751181805343
, 0.425725765117601
, 0.851451530235203
, 0.530445176063267
, 1.814470592751009 ]
expmTest2 = expm nd2 :~15~: (2><2)
[ 2.718281828459045
, 0.000000000000000
, 2.718281828459045
, 2.718281828459045 ]
---------------------------------------------------------------------
minimizationTest = TestList
[ utest "minimization conjugatefr" (minim1 f df [5,7] ~~ [1,2])
, utest "minimization nmsimplex2" (minim2 f [5,7] `elem` [24,25])
]
where f [x,y] = 10*(x-1)^2 + 20*(y-2)^2 + 30
df [x,y] = [20*(x-1), 40*(y-2)]
minim1 g dg ini = fst $ minimizeD ConjugateFR 1E-3 30 1E-2 1E-4 g dg ini
minim2 g ini = rows $ snd $ minimize NMSimplex2 1E-2 30 [1,1] g ini
---------------------------------------------------------------------
rootFindingTest = TestList [ utest "root Hybrids" (fst sol1 ~~ [1,1])
, utest "root Newton" (rows (snd sol2) == 2)
]
where sol1 = root Hybrids 1E-7 30 (rosenbrock 1 10) [-10,-5]
sol2 = rootJ Newton 1E-7 30 (rosenbrock 1 10) (jacobian 1 10) [-10,-5]
rosenbrock a b [x,y] = [ a*(1-x), b*(y-x^2) ]
jacobian a b [x,_y] = [ [-a , 0]
, [-2*b*x, b] ]
---------------------------------------------------------------------
odeTest = utest "ode" (last (toLists sol) ~~ newsol)
where
sol = odeSolveV RK8pd 1E-6 1E-6 0 (l2v $ vanderpol 10) (fromList [1,0]) ts
ts = linspace 101 (0,100)
l2v f = \t -> fromList . f t . toList
vanderpol mu _t [x,y] = [y, -x + mu * y * (1-x^2) ]
newsol = [-1.758888036617841, 8.364349410519058e-2]
-- oldsol = [-1.7588880332411019, 8.364348908711941e-2]
---------------------------------------------------------------------
fittingTest = utest "levmar" (ok1 && ok2)
where
xs = map return [0 .. 39]
sigma = 0.1
ys = map return $ toList $ fromList (map (head . expModel [5,0.1,1]) xs)
+ scalar sigma * (randomVector 0 Gaussian 40)
dats = zip xs (zip ys (repeat sigma))
dat = zip xs ys
expModel [a,lambda,b] [t] = [a * exp (-lambda * t) + b]
expModelDer [a,lambda,_b] [t] = [[exp (-lambda * t), -t * a * exp(-lambda*t) , 1]]
sols = fst $ fitModelScaled 1E-4 1E-4 20 (expModel, expModelDer) dats [1,0,0]
sol = fst $ fitModel 1E-4 1E-4 20 (expModel, expModelDer) dat [1,0,0]
ok1 = and (zipWith f sols [5,0.1,1]) where f (x,d) r = abs (x-r)<2*d
ok2 = norm2 (fromList (map fst sols) - fromList sol) < 1E-5
-----------------------------------------------------
mbCholTest = utest "mbCholTest" (ok1 && ok2) where
m1 = (2><2) [2,5,5,8 :: Double]
m2 = (2><2) [3,5,5,9 :: Complex Double]
ok1 = mbCholSH m1 == Nothing
ok2 = mbCholSH m2 == Just (chol m2)
---------------------------------------------------------------------
randomTestGaussian = c :~1~: snd (meanCov dat) where
a = (3><3) [1,2,3,
2,4,0,
-2,2,1]
m = 3 |> [1,2,3]
c = a <> trans a
dat = gaussianSample 7 (10^6) m c
randomTestUniform = c :~1~: snd (meanCov dat) where
c = diag $ 3 |> map ((/12).(^2)) [1,2,3]
dat = uniformSample 7 (10^6) [(0,1),(1,3),(3,6)]
---------------------------------------------------------------------
rot :: Double -> Matrix Double
rot a = (3><3) [ c,0,s
, 0,1,0
,-s,0,c ]
where c = cos a
s = sin a
rotTest = fun (10^5) :~11~: rot 5E4
where fun n = foldl1' (<>) (map rot angles)
where angles = toList $ linspace n (0,1)
---------------------------------------------------------------------
-- vector <= 0.6.0.2 bug discovered by Patrick Perry
-- http://trac.haskell.org/vector/ticket/31
offsetTest = y == y' where
x = fromList [0..3 :: Double]
y = subVector 1 3 x
(f,o,n) = unsafeToForeignPtr y
y' = unsafeFromForeignPtr f o n
---------------------------------------------------------------------
normsVTest = TestList [
utest "normv2CD" $ norm2PropC v
, utest "normv2CF" $ norm2PropC (single v)
#ifndef NONORMVTEST
, utest "normv2D" $ norm2PropR x
, utest "normv2F" $ norm2PropR (single x)
#endif
, utest "normv1CD" $ norm1 v == 8
, utest "normv1CF" $ norm1 (single v) == 8
, utest "normv1D" $ norm1 x == 6
, utest "normv1F" $ norm1 (single x) == 6
, utest "normvInfCD" $ normInf v == 5
, utest "normvInfCF" $ normInf (single v) == 5
, utest "normvInfD" $ normInf x == 3
, utest "normvInfF" $ normInf (single x) == 3
] where v = fromList [1,-2,3:+4] :: Vector (Complex Double)
x = fromList [1,2,-3] :: Vector Double
#ifndef NONORMVTEST
norm2PropR a = norm2 a =~= sqrt (udot a a)
#endif
norm2PropC a = norm2 a =~= realPart (sqrt (a <.> a))
a =~= b = fromList [a] |~| fromList [b]
normsMTest = TestList [
utest "norm2mCD" $ pnorm PNorm2 v =~= 8.86164970498005
, utest "norm2mCF" $ pnorm PNorm2 (single v) =~= 8.86164970498005
, utest "norm2mD" $ pnorm PNorm2 x =~= 5.96667765076216
, utest "norm2mF" $ pnorm PNorm2 (single x) =~= 5.96667765076216
, utest "norm1mCD" $ pnorm PNorm1 v == 9
, utest "norm1mCF" $ pnorm PNorm1 (single v) == 9
, utest "norm1mD" $ pnorm PNorm1 x == 7
, utest "norm1mF" $ pnorm PNorm1 (single x) == 7
, utest "normmInfCD" $ pnorm Infinity v == 12
, utest "normmInfCF" $ pnorm Infinity (single v) == 12
, utest "normmInfD" $ pnorm Infinity x == 8
, utest "normmInfF" $ pnorm Infinity (single x) == 8
, utest "normmFroCD" $ pnorm Frobenius v =~= 8.88819441731559
, utest "normmFroCF" $ pnorm Frobenius (single v) =~~= 8.88819441731559
, utest "normmFroD" $ pnorm Frobenius x =~= 6.24499799839840
, utest "normmFroF" $ pnorm Frobenius (single x) =~~= 6.24499799839840
] where v = (2><2) [1,-2*i,3:+4,7] :: Matrix (Complex Double)
x = (2><2) [1,2,-3,5] :: Matrix Double
a =~= b = fromList [a] :~10~: fromList [b]
a =~~= b = fromList [a] :~5~: fromList [b]
---------------------------------------------------------------------
sumprodTest = TestList [
utest "sumCD" $ sumElements z == 6
, utest "sumCF" $ sumElements (single z) == 6
, utest "sumD" $ sumElements v == 6
, utest "sumF" $ sumElements (single v) == 6
, utest "prodCD" $ prodProp z
, utest "prodCF" $ prodProp (single z)
, utest "prodD" $ prodProp v
, utest "prodF" $ prodProp (single v)
] where v = fromList [1,2,3] :: Vector Double
z = fromList [1,2-i,3+i]
prodProp x = prodElements x == product (toList x)
---------------------------------------------------------------------
chainTest = utest "chain" $ foldl1' (<>) ms |~| optimiseMult ms where
ms = [ diag (fromList [1,2,3 :: Double])
, konst 3 (3,5)
, (5><10) [1 .. ]
, konst 5 (10,2)
]
---------------------------------------------------------------------
conjuTest m = mapVector conjugate (flatten (trans m)) == flatten (ctrans m)
---------------------------------------------------------------------
newtype State s a = State { runState :: s -> (a,s) }
instance Functor (State s)
where
fmap f x = pure f <*> x
instance Applicative (State s)
where
pure = return
(<*>) = ap
instance Monad (State s) where
return a = State $ \s -> (a,s)
m >>= f = State $ \s -> let (a,s') = runState m s
in runState (f a) s'
state_get :: State s s
state_get = State $ \s -> (s,s)
state_put :: s -> State s ()
state_put s = State $ \_ -> ((),s)
evalState :: State s a -> s -> a
evalState m s = let (a,s') = runState m s
in seq s' a
newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }
instance Monad m => Functor (MaybeT m)
where
fmap f x = pure f <*> x
instance Monad m => Applicative (MaybeT m)
where
pure = return
(<*>) = ap
instance Monad m => Monad (MaybeT m) where
return a = MaybeT $ return $ Just a
m >>= f = MaybeT $ do
res <- runMaybeT m
case res of
Nothing -> return Nothing
Just r -> runMaybeT (f r)
fail _ = MaybeT $ return Nothing
lift_maybe m = MaybeT $ do
res <- m
return $ Just res
-- apply a test to successive elements of a vector, evaluates to true iff test passes for all pairs
--successive_ :: Storable a => (a -> a -> Bool) -> Vector a -> Bool
successive_ t v = maybe False (\_ -> True) $ evalState (runMaybeT (mapVectorM_ stp (subVector 1 (dim v - 1) v))) (v @> 0)
where stp e = do
ep <- lift_maybe $ state_get
if t e ep
then lift_maybe $ state_put e
else (fail "successive_ test failed")
-- operate on successive elements of a vector and return the resulting vector, whose length 1 less than that of the input
--successive :: (Storable a, Storable b) => (a -> a -> b) -> Vector a -> Vector b
successive f v = evalState (mapVectorM stp (subVector 1 (dim v - 1) v)) (v @> 0)
where stp e = do
ep <- state_get
state_put e
return $ f ep e
succTest = utest "successive" $
successive_ (>) (fromList [1 :: Double,2,3,4]) == True
&& successive_ (>) (fromList [1 :: Double,3,2,4]) == False
&& successive (+) (fromList [1..10 :: Double]) == 9 |> [3,5,7,9,11,13,15,17,19]
---------------------------------------------------------------------
findAssocTest = utest "findAssoc" ok
where
ok = m1 == m2
m1 = assoc (6,6) 7 $ zip (find (>0) (ident 5 :: Matrix Float)) [10 ..] :: Matrix Double
m2 = diagRect 7 (fromList[10..14]) 6 6
---------------------------------------------------------------------
condTest = utest "cond" ok
where
ok = step v * v == cond v 0 0 0 v
v = fromList [-7 .. 7 ] :: Vector Float
---------------------------------------------------------------------
conformTest = utest "conform" ok
where
ok = 1 + row [1,2,3] + col [10,20,30,40] + (4><3) [1..]
== (4><3) [13,15,17
,26,28,30
,39,41,43
,52,54,56]
---------------------------------------------------------------------
accumTest = utest "accum" ok
where
x = ident 3 :: Matrix Double
ok = accum x (+) [((1,2),7), ((2,2),3)]
== (3><3) [1,0,0
,0,1,7
,0,0,4]
&&
toList (flatten x) == [1,0,0,0,1,0,0,0,1]
--------------------------------------------------------------------------------
convolutionTest = utest "convolution" ok
where
-- a = fromList [1..10] :: Vector Double
b = fromList [1..3] :: Vector Double
c = (5><7) [1..] :: Matrix Double
-- d = (3><3) [0,-1,0,-1,4,-1,0,-1,0] :: Matrix Double
ok = separable (corr b) c == corr2 (outer b b) c
&& separable (conv b) c == conv2 (outer b b) c
--------------------------------------------------------------------------------
kroneckerTest = utest "kronecker" ok
where
a,x,b :: Matrix Double
a = (3><4) [1..]
x = (4><2) [3,5..]
b = (2><5) [0,5..]
v1 = vec (a <> x <> b)
v2 = (trans b `kronecker` a) <.> vec x
s = trans b <> b
v3 = vec s
v4 = (dup 5 :: Matrix Double) <.> vech s
ok = v1 == v2 && v3 == v4
&& vtrans 1 a == trans a
&& vtrans (rows a) a == asColumn (vec a)
--------------------------------------------------------------------------------
-- | All tests must pass with a maximum dimension of about 20
-- (some tests may fail with bigger sizes due to precision loss).
runTests :: Int -- ^ maximum dimension
-> IO ()
runTests n = do
setErrorHandlerOff
let test p = qCheck n p
putStrLn "------ mult Double"
test (multProp1 10 . rConsist)
test (multProp1 10 . cConsist)
test (multProp2 10 . rConsist)
test (multProp2 10 . cConsist)
putStrLn "------ mult Float"
test (multProp1 6 . (single *** single) . rConsist)
test (multProp1 6 . (single *** single) . cConsist)
test (multProp2 6 . (single *** single) . rConsist)
test (multProp2 6 . (single *** single) . cConsist)
putStrLn "------ sub-trans"
test (subProp . rM)
test (subProp . cM)
putStrLn "------ ctrans"
test (conjuTest . cM)
test (conjuTest . zM)
putStrLn "------ lu"
test (luProp . rM)
test (luProp . cM)
putStrLn "------ inv (linearSolve)"
test (invProp . rSqWC)
test (invProp . cSqWC)
putStrLn "------ luSolve"
test (linearSolveProp (luSolve.luPacked) . rSqWC)
test (linearSolveProp (luSolve.luPacked) . cSqWC)
putStrLn "------ cholSolve"
test (linearSolveProp (cholSolve.chol) . rPosDef)
test (linearSolveProp (cholSolve.chol) . cPosDef)
putStrLn "------ luSolveLS"
test (linearSolveProp linearSolveLS . rSqWC)
test (linearSolveProp linearSolveLS . cSqWC)
test (linearSolveProp2 linearSolveLS . rConsist)
test (linearSolveProp2 linearSolveLS . cConsist)
putStrLn "------ pinv (linearSolveSVD)"
test (pinvProp . rM)
test (pinvProp . cM)
putStrLn "------ det"
test (detProp . rSqWC)
test (detProp . cSqWC)
putStrLn "------ svd"
test (svdProp1 . rM)
test (svdProp1 . cM)
test (svdProp1a svdR)
test (svdProp1a svdC)
test (svdProp1a svdRd)
test (svdProp1b svdR)
test (svdProp1b svdC)
test (svdProp1b svdRd)
test (svdProp2 thinSVDR)
test (svdProp2 thinSVDC)
test (svdProp2 thinSVDRd)
test (svdProp2 thinSVDCd)
test (svdProp3 . rM)
test (svdProp3 . cM)
test (svdProp4 . rM)
test (svdProp4 . cM)
test (svdProp5a)
test (svdProp5b)
test (svdProp6a)
test (svdProp6b)
test (svdProp7 . rM)
test (svdProp7 . cM)
putStrLn "------ svdCd"
#ifdef NOZGESDD
putStrLn "Omitted"
#else
test (svdProp1a svdCd)
test (svdProp1b svdCd)
#endif
putStrLn "------ eig"
test (eigSHProp . rHer)
test (eigSHProp . cHer)
test (eigProp . rSq)
test (eigProp . cSq)
test (eigSHProp2 . rHer)
test (eigSHProp2 . cHer)
test (eigProp2 . rSq)
test (eigProp2 . cSq)
putStrLn "------ nullSpace"
test (nullspaceProp . rM)
test (nullspaceProp . cM)
putStrLn "------ qr"
test (qrProp . rM)
test (qrProp . cM)
test (rqProp . rM)
test (rqProp . cM)
test (rqProp1 . cM)
test (rqProp2 . cM)
test (rqProp3 . cM)
putStrLn "------ hess"
test (hessProp . rSq)
test (hessProp . cSq)
putStrLn "------ schur"
test (schurProp2 . rSq)
test (schurProp1 . cSq)
putStrLn "------ chol"
test (cholProp . rPosDef)
test (cholProp . cPosDef)
test (exactProp . rPosDef)
test (exactProp . cPosDef)
putStrLn "------ expm"
test (expmDiagProp . complex. rSqWC)
test (expmDiagProp . cSqWC)
putStrLn "------ fft"
test (\v -> ifft (fft v) |~| v)
putStrLn "------ vector operations - Double"
test (\u -> sin u ^ 2 + cos u ^ 2 |~| (1::RM))
test $ (\u -> sin u ^ 2 + cos u ^ 2 |~| (1::CM)) . liftMatrix makeUnitary
test (\u -> sin u ** 2 + cos u ** 2 |~| (1::RM))
test (\u -> cos u * tan u |~| sin (u::RM))
test $ (\u -> cos u * tan u |~| sin (u::CM)) . liftMatrix makeUnitary
putStrLn "------ vector operations - Float"
test (\u -> sin u ^ 2 + cos u ^ 2 |~~| (1::FM))
test $ (\u -> sin u ^ 2 + cos u ^ 2 |~~| (1::ZM)) . liftMatrix makeUnitary
test (\u -> sin u ** 2 + cos u ** 2 |~~| (1::FM))
test (\u -> cos u * tan u |~~| sin (u::FM))
test $ (\u -> cos u * tan u |~~| sin (u::ZM)) . liftMatrix makeUnitary
putStrLn "------ read . show"
test (\m -> (m::RM) == read (show m))
test (\m -> (m::CM) == read (show m))
test (\m -> toRows (m::RM) == read (show (toRows m)))
test (\m -> toRows (m::CM) == read (show (toRows m)))
test (\m -> (m::FM) == read (show m))
test (\m -> (m::ZM) == read (show m))
test (\m -> toRows (m::FM) == read (show (toRows m)))
test (\m -> toRows (m::ZM) == read (show (toRows m)))
putStrLn "------ some unit tests"
c <- runTestTT $ TestList
[ utest "1E5 rots" rotTest
, utest "det1" detTest1
, utest "invlndet" detTest2
, utest "expm1" (expmTest1)
, utest "expm2" (expmTest2)
, utest "arith1" $ ((ones (100,100) * 5 + 2)/0.5 - 7)**2 |~| (49 :: RM)
, utest "arith2" $ ((scalar (1+i) * ones (100,100) * 5 + 2)/0.5 - 7)**2 |~| ( scalar (140*i-51) :: CM)
, utest "arith3" $ exp (scalar i * ones(10,10)*pi) + 1 |~| 0
, utest "<\\>" $ (3><2) [2,0,0,3,1,1::Double] <\> 3|>[4,9,5] |~| 2|>[2,3]
-- , utest "gamma" (gamma 5 == 24.0)
-- , besselTest
-- , exponentialTest
, utest "deriv" derivTest
, utest "integrate" (abs (volSphere 2.5 - 4/3*pi*2.5^3) < 1E-8)
, utest "polySolve" (polySolveProp [1,2,3,4])
, minimizationTest
, rootFindingTest
, utest "randomGaussian" randomTestGaussian
, utest "randomUniform" randomTestUniform
, utest "buildVector/Matrix" $
complex (10 |> [0::Double ..]) == buildVector 10 fromIntegral
&& ident 5 == buildMatrix 5 5 (\(r,c) -> if r==c then 1::Double else 0)
, utest "rank" $ rank ((2><3)[1,0,0,1,6*eps,0]) == 1
&& rank ((2><3)[1,0,0,1,7*eps,0]) == 2
, utest "block" $ fromBlocks [[ident 3,0],[0,ident 4]] == (ident 7 :: CM)
, odeTest
, fittingTest
, mbCholTest
, utest "offset" offsetTest
, normsVTest
, normsMTest
, sumprodTest
, chainTest
, succTest
, findAssocTest
, condTest
, conformTest
, accumTest
, convolutionTest
, kroneckerTest
]
when (errors c + failures c > 0) exitFailure
return ()
-- single precision approximate equality
infixl 4 |~~|
a |~~| b = a :~6~: b
makeUnitary v | realPart n > 1 = v / scalar n
| otherwise = v
where n = sqrt (v <.> v)
-- -- | Some additional tests on big matrices. They take a few minutes.
-- runBigTests :: IO ()
-- runBigTests = undefined
{-
-- | testcase for nonempty fpu stack
findNaN :: Int -> Bool
findNaN n = all (bugProp . eye) (take n $ cycle [1..20])
where eye m = ident m :: Matrix ( Double)
-}
--------------------------------------------------------------------------------
-- | Performance measurements.
runBenchmarks :: IO ()
runBenchmarks = do
solveBench
subBench
mkVecBench
multBench
cholBench
svdBench
eigBench
putStrLn ""
--------------------------------
time msg act = do
putStr (msg++" ")
t0 <- getCPUTime
act `seq` putStr " "
t1 <- getCPUTime
printf "%6.2f s CPU\n" $ (fromIntegral (t1 - t0) / (10^12 :: Double)) :: IO ()
return ()
timeR msg act = do
putStr (msg++" ")
t0 <- getCPUTime
putStr (show act)
t1 <- getCPUTime
printf "%6.2f s CPU\n" $ (fromIntegral (t1 - t0) / (10^12 :: Double)) :: IO ()
return ()
--------------------------------
manymult n = foldl1' (<>) (map rot2 angles) where
angles = toList $ linspace n (0,1)
rot2 :: Double -> Matrix Double
rot2 a = (3><3) [ c,0,s
, 0,1,0
,-s,0,c ]
where c = cos a
s = sin a
multb n = foldl1' (<>) (replicate (10^6) (ident n :: Matrix Double))
--------------------------------
manyvec0 xs = sum $ map (\x -> x + x**2 + x**3) xs
manyvec1 xs = sumElements $ fromRows $ map (\x -> fromList [x,x**2,x**3]) xs
manyvec5 xs = sumElements $ fromRows $ map (\x -> vec3 x (x**2) (x**3)) xs
manyvec2 xs = sum $ map (\x -> sqrt(x^2 + (x**2)^2 +(x**3)^2)) xs
manyvec3 xs = sum $ map (pnorm PNorm2 . (\x -> fromList [x,x**2,x**3])) xs
manyvec4 xs = sum $ map (pnorm PNorm2 . (\x -> vec3 x (x**2) (x**3))) xs
vec3 :: Double -> Double -> Double -> Vector Double
vec3 a b c = runSTVector $ do
v <- newUndefinedVector 3
writeVector v 0 a
writeVector v 1 b
writeVector v 2 c
return v
mkVecBench = do
let n = 1000000
xs = toList $ linspace n (0,1::Double)
putStr "\neval data... "; print (sum xs)
timeR "listproc " $ manyvec0 xs
timeR "fromList matrix " $ manyvec1 xs
timeR "vec3 matrix " $ manyvec5 xs
timeR "listproc norm " $ manyvec2 xs
timeR "norm fromList " $ manyvec3 xs
timeR "norm vec3 " $ manyvec4 xs
--------------------------------
subBench = do
putStrLn ""
let g = foldl1' (.) (replicate (10^5) (\v -> subVector 1 (dim v -1) v))
time "0.1M subVector " (g (constant 1 (1+10^5) :: Vector Double) @> 0)
let f = foldl1' (.) (replicate (10^5) (fromRows.toRows))
time "subVector-join 3" (f (ident 3 :: Matrix Double) @@>(0,0))
time "subVector-join 10" (f (ident 10 :: Matrix Double) @@>(0,0))
--------------------------------
multBench = do
let a = ident 1000 :: Matrix Double
let b = ident 2000 :: Matrix Double
a `seq` b `seq` putStrLn ""
time "product of 1M different 3x3 matrices" (manymult (10^6))
putStrLn ""
time "product of 1M constant 1x1 matrices" (multb 1)
time "product of 1M constant 3x3 matrices" (multb 3)
--time "product of 1M constant 5x5 matrices" (multb 5)
time "product of 1M const. 10x10 matrices" (multb 10)
--time "product of 1M const. 15x15 matrices" (multb 15)
time "product of 1M const. 20x20 matrices" (multb 20)
--time "product of 1M const. 25x25 matrices" (multb 25)
putStrLn ""
time "product (1000 x 1000)<>(1000 x 1000)" (a<>a)
time "product (2000 x 2000)<>(2000 x 2000)" (b<>b)
--------------------------------
eigBench = do
let m = reshape 1000 (randomVector 777 Uniform (1000*1000))
s = m + trans m
m `seq` s `seq` putStrLn ""
time "eigenvalues symmetric 1000x1000" (eigenvaluesSH' m)
time "eigenvectors symmetric 1000x1000" (snd $ eigSH' m)
time "eigenvalues general 1000x1000" (eigenvalues m)
time "eigenvectors general 1000x1000" (snd $ eig m)
--------------------------------
svdBench = do
let a = reshape 500 (randomVector 777 Uniform (3000*500))
b = reshape 1000 (randomVector 777 Uniform (1000*1000))
fv (_,_,v) = v@@>(0,0)
a `seq` b `seq` putStrLn ""
time "singular values 3000x500" (singularValues a)
time "thin svd 3000x500" (fv $ thinSVD a)
time "full svd 3000x500" (fv $ svd a)
time "singular values 1000x1000" (singularValues b)
time "full svd 1000x1000" (fv $ svd b)
--------------------------------
solveBenchN n = do
let x = uniformSample 777 (2*n) (replicate n (-1,1))
a = trans x <> x
b = asColumn $ randomVector 666 Uniform n
a `seq` b `seq` putStrLn ""
time ("svd solve " ++ show n) (linearSolveSVD a b)
time (" ls solve " ++ show n) (linearSolveLS a b)
time (" solve " ++ show n) (linearSolve a b)
time ("cholSolve " ++ show n) (cholSolve (chol a) b)
solveBench = do
solveBenchN 500
solveBenchN 1000
-- solveBenchN 1500
--------------------------------
cholBenchN n = do
let x = uniformSample 777 (2*n) (replicate n (-1,1))
a = trans x <> x
a `seq` putStr ""
time ("chol " ++ show n) (chol a)
cholBench = do
putStrLn ""
cholBenchN 1200
cholBenchN 600
cholBenchN 300
-- cholBenchN 150
-- cholBenchN 50
|