1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
{-# LANGUAGE FlexibleContexts,
MultiParamTypeClasses,
GeneralizedNewtypeDeriving,
DeriveTraversable,
DeriveDataTypeable #-}
module IntMapClass where
import Control.Arrow (second)
import qualified Data.IntMap.Strict as IntMap
import Data.IntMap.Strict ( IntMap )
import Data.Typeable ( Typeable )
import Data.Data ( Data )
import Data.Foldable ( Foldable )
import Data.Traversable ( Traversable )
import Data.Monoid ( Monoid )
import Control.DeepSeq ( NFData )
import Control.Applicative ( Applicative )
import Data.Coerce
newtype IMap k a = IMap { intmap :: IntMap a }
deriving
( Functor
, Typeable
, Foldable
, Traversable
, Eq
, Data
, Ord
, Read
, Show
, Semigroup
, Monoid
, NFData
)
adapt_k_a_m :: Coercible k1 Int =>
(Int -> t -> IntMap a -> x) -> k1 -> t -> IMap k2 a -> x
adaptm_k_a_m f k a m = IMap $ adapt_k_a_m f k a m
adaptm_k_a_m :: Coercible k1 Int =>
(Int -> t -> IntMap a1 -> IntMap a2)
-> k1 -> t -> IMap k2 a1 -> IMap k3 a2
adapt_k_a_m f k a m = adapt_m (adapt_k f k a) m
adapt_m_k :: Coercible k Int => (IntMap a -> Int -> x) -> IMap k a -> k -> x
adapt_m_k f (IMap m) k = f m (coerce k)
adapt_k_m :: Coercible k Int => (Int -> IntMap a -> x) -> k -> IMap k a -> x
adapt_k_m f k (IMap m) = f (coerce k) m
-- adapt_k_m2 :: Coercible k Int => (Int -> IntMap a -> x) -> k -> IMap k a -> x
-- adapt_k_m2 f k m = (adapt_k f) k (intmap m)
adaptm_k_m
:: Coercible k Int =>
(Int -> IntMap a -> IntMap a) -> k -> IMap k a -> IMap k a
adaptm_k_m f k m = IMap $ adapt_k_m f k m
adapt_k :: Coercible k Int => (Int -> x) -> k -> x
adapt_k f k = f (coerce k)
adapt_m_m :: (IntMap a -> IntMap a -> x) -> IMap k a -> IMap k a -> x
adapt_m_m f m = adapt_m (adapt_m f m)
adaptm_m_m :: (IntMap a -> IntMap a -> IntMap a) -> IMap k a -> IMap k a -> IMap k a
adaptm_m_m f a b = IMap $ adapt_m_m f a b
adapt_m :: (IntMap a -> x) -> IMap k a -> x
adapt_m f (IMap m) = f m
(!) :: Coercible k Int => IMap k a -> k -> a
(!) = adapt_m_k (IntMap.!)
(\\) :: IMap k a -> IMap k a -> IMap k a
(\\) a b = IMap $ adapt_m_m (IntMap.\\) a b
null :: IMap k a -> Bool
null = adapt_m (IntMap.null)
size :: IMap k a -> Int
size = adapt_m (IntMap.size)
member :: Coercible k Int => k -> IMap k a -> Bool
member = adapt_k_m (IntMap.member)
notMember :: Coercible k Int => k -> IMap k a -> Bool
notMember = adapt_k_m (IntMap.notMember)
lookup :: Coercible k Int => k -> IMap k a -> Maybe a
lookup = adapt_k_m (IntMap.lookup)
findWithDefault :: Coercible k Int => x -> k -> IMap k x -> x
findWithDefault a = adapt_k_m (IntMap.findWithDefault a)
lookupLT :: Coercible Int k => k -> IMap k a -> Maybe (k, a)
lookupLT k (IMap m) = coerce $ IntMap.lookupLT (coerce k) m
lookupGT :: Coercible Int k => k -> IMap k a -> Maybe (k, a)
lookupGT k (IMap m) = coerce $ IntMap.lookupGT (coerce k) m
lookupLE :: Coercible Int k => k -> IMap k a -> Maybe (k, a)
lookupLE k (IMap m) = coerce $ IntMap.lookupLE (coerce k) m
lookupGE :: Coercible Int k => k -> IMap k a -> Maybe (k, a)
lookupGE k (IMap m) = coerce $ IntMap.lookupGE (coerce k) m
empty :: IMap k a
empty = IMap IntMap.empty
singleton :: Coercible k Int => k -> a -> IMap k a
singleton = (IMap .) . adapt_k IntMap.singleton
insert :: Coercible k Int => k -> a -> IMap k a -> IMap k a
insert = adaptm_k_a_m IntMap.insert
insertWith :: Coercible k Int => (a -> a -> a) -> k -> a -> IMap k a -> IMap k a
insertWith f = adaptm_k_a_m (IntMap.insertWith f)
insertWithKey :: Coercible Int k => (k -> a -> a -> a) -> k -> a -> IMap k a -> IMap k a
insertWithKey f = adaptm_k_a_m (IntMap.insertWithKey $ f . coerce)
insertLookupWithKey :: Coercible Int k =>
(k -> a -> a -> a) -> k -> a -> IMap k a -> (Maybe a, IMap k a)
insertLookupWithKey f k a m = second IMap $ adapt_k_a_m (IntMap.insertLookupWithKey $ f . coerce) k a m
delete :: Coercible k Int => k -> IMap k a -> IMap k a
delete = adaptm_k_m IntMap.delete
adjust :: Coercible k Int => (a -> a) -> k -> IMap k a -> IMap k a
adjust f = adaptm_k_m (IntMap.adjust f)
adjustWithKey :: Coercible Int k =>
(k -> a -> a) -> k -> IMap k a -> IMap k a
adjustWithKey f = adaptm_k_m (IntMap.adjustWithKey $ f . coerce)
update
:: Coercible k Int => (a -> Maybe a) -> k -> IMap k a -> IMap k a
update f = adaptm_k_m (IntMap.update f)
updateWithKey :: Coercible Int k =>
(k -> a -> Maybe a) -> k -> IMap k a -> IMap k a
updateWithKey f = adaptm_k_m (IntMap.updateWithKey $ f . coerce)
updateLookupWithKey :: Coercible k Int =>
(k -> a -> Maybe a) -> k -> IMap k a -> (Maybe a, IMap k a)
updateLookupWithKey f k m =
second IMap $ adapt_k_m (IntMap.updateLookupWithKey $ f . coerce) k m
alter :: Coercible k Int => (Maybe a -> Maybe a) -> k -> IMap k a -> IMap k a
alter f = adaptm_k_m (IntMap.alter f)
union :: IMap k a -> IMap k a -> IMap k a
union = adaptm_m_m IntMap.union
unionWith :: (a -> a -> a) -> IMap k a -> IMap k a -> IMap k a
unionWith f = adaptm_m_m (IntMap.unionWith f)
unionWithKey :: Coercible Int k => (k -> a -> a -> a) -> IMap k a -> IMap k a -> IMap k a
unionWithKey f = adaptm_m_m (IntMap.unionWithKey $ f . coerce)
unions :: Coercible k Int => [IMap k a] -> IMap k a
unions ms = IMap $ IntMap.unions (coerce <$> ms)
unionsWith :: Coercible k Int => (a->a->a) -> [IMap k a] -> IMap k a
unionsWith f ms = IMap $ IntMap.unionsWith f (coerce <$> ms)
difference :: IMap k b -> IMap k b -> IMap k b
difference = adaptm_m_m IntMap.difference
differenceWith :: (b -> b -> Maybe b)
-> IMap k b -> IMap k b -> IMap k b
differenceWith f = adaptm_m_m (IntMap.differenceWith f)
differenceWithKey ::
Coercible Int k =>
(k -> a -> a -> Maybe a) -> IMap k a -> IMap k a -> IMap k a
differenceWithKey f = adaptm_m_m (IntMap.differenceWithKey $ f . coerce)
intersection :: IMap k b -> IMap k b -> IMap k b
intersection = adaptm_m_m IntMap.intersection
intersectionWith :: (a -> a -> a) -> IMap k a -> IMap k a -> IMap k a
intersectionWith f = adaptm_m_m (IntMap.intersectionWith f)
mergeWithKey ::
Coercible Int k =>
(k -> a -> b -> Maybe c)
-> (IMap k a -> IMap k c)
-> (IMap k b -> IMap k c)
-> IMap k a
-> IMap k b
-> IMap k c
mergeWithKey f g1 g2 = adaptm_m_m (IntMap.mergeWithKey f' g1' g2')
where f' = f . coerce
g1' = intmap . g1 . IMap
g2' = intmap . g2 . IMap
adapt_m_m f m = adapt_m (adapt_m f m)
adaptm_m_m f a b = IMap $ adapt_m_m f a b
map :: (a -> b) -> IMap k a -> IMap k b
map f = IMap . adapt_m (IntMap.map f)
mapWithKey :: Coercible Int k => (k -> a -> b) -> IMap k a -> IMap k b
mapWithKey f = IMap . adapt_m (IntMap.mapWithKey $ f . coerce)
-- FIXME: fmap IMap ?
traverseWithKey ::
(Applicative f, Coercible Int k) =>
(k -> a -> f b) -> IMap k a -> f (IMap k b)
traverseWithKey f = fmap IMap . adapt_m (IntMap.traverseWithKey $ f . coerce)
mapAccum :: (t -> b -> (t, a)) -> t -> IMap k b -> (t, IMap k a)
mapAccum f a m = second IMap $ IntMap.mapAccum f a (intmap m)
mapAccumWithKey :: Coercible Int k =>
(t -> k -> b -> (t, a)) -> t -> IMap k b -> (t, IMap k a)
mapAccumWithKey f a m = second IMap $ IntMap.mapAccumWithKey f' a (intmap m)
where f' a k b = f a (coerce k) b
mapAccumRWithKey :: Coercible Int k =>
(t -> k -> b -> (t, a)) -> t -> IMap k b -> (t, IMap k a)
mapAccumRWithKey f a m = second IMap $ IntMap.mapAccumRWithKey f' a (intmap m)
where f' a k b = f a (coerce k) b
mapKeys :: (Coercible Int k1, Coercible Int k2) =>
(k1 -> k2) -> IMap k1 a -> IMap k2 a
mapKeys f = IMap . adapt_m (IntMap.mapKeys (coerce . f . coerce))
mapKeysWith :: (Coercible Int k1, Coercible Int k2) =>
(a->a->a) -> (k1 -> k2) -> IMap k1 a -> IMap k2 a
mapKeysWith c f = IMap . adapt_m (IntMap.mapKeysWith c (coerce . f . coerce))
mapKeysMonotonic :: (Coercible Int k1, Coercible Int k2) =>
(k1 -> k2) -> IMap k1 a -> IMap k2 a
mapKeysMonotonic f = IMap . adapt_m (IntMap.mapKeysMonotonic (coerce . f . coerce))
foldr :: (a -> x -> x) -> x -> IMap k a -> x
foldr f b = adapt_m (IntMap.foldr f b)
foldl :: (x -> a -> x) -> x -> IMap k a -> x
foldl f a = adapt_m (IntMap.foldl f a)
foldrWithKey :: Coercible Int b => (b -> a -> x -> x) -> x -> IMap k a -> x
foldrWithKey f b = adapt_m (IntMap.foldrWithKey (f . coerce) b)
foldlWithKey ::
Coercible Int k => (x -> k -> a -> x) -> x -> IMap k a -> x
foldlWithKey f a = adapt_m (IntMap.foldlWithKey f' a) where f' a = f a . coerce
foldMapWithKey :: (Monoid m, Coercible Int k) => (k -> a -> m) -> IMap k a -> m
foldMapWithKey f = adapt_m (IntMap.foldMapWithKey $ f . coerce)
foldr' :: (a -> x -> x) -> x -> IMap k a -> x
foldr' f b = adapt_m (IntMap.foldr' f b)
foldl' :: (a -> x -> a) -> a -> IMap k x -> a
foldl' f b = adapt_m (IntMap.foldl' f b)
foldrWithKey' :: Coercible Int b => (b -> a -> x -> x) -> x -> IMap k a -> x
foldrWithKey' f b = adapt_m (IntMap.foldrWithKey' (f . coerce) b)
foldlWithKey' ::
Coercible Int k => (x -> k -> a -> x) -> x -> IMap k a -> x
foldlWithKey' f a = adapt_m (IntMap.foldlWithKey' f' a) where f' a = f a . coerce
elems :: IMap k a -> [a]
elems = IntMap.elems . intmap
keys :: Coercible Int k => IMap k a -> [k]
keys = coerce . IntMap.keys . intmap
assocs :: Coercible Int k => IMap k a -> [(k, a)]
assocs = coerce . IntMap.assocs . intmap
-- Not implementing... (doing it right requires wrapping IntSet)
-- keysSet :: IntMap a -> IntSet
-- fromSet :: (Key -> a) -> IntSet -> IntMap a
toList :: Coercible Int k => IMap k a -> [(k, a)]
toList = coerce . IntMap.toList . intmap
fromList :: Coercible Int k => [(k, a)] -> IMap k a
fromList = IMap . IntMap.fromList . coerce
fromListWith :: Coercible Int k => (a -> a -> a) -> [(k, a)] -> IMap k a
fromListWith f = IMap . IntMap.fromListWith f . coerce
fromListWithKey :: Coercible Int k =>
(k -> a -> a -> a) -> [(k, a)] -> IMap k a
fromListWithKey f = IMap . IntMap.fromListWithKey (f . coerce) . coerce
toAscList :: Coercible Int k => IMap k a -> [(k,a)]
toAscList (IMap m) = coerce $ IntMap.toAscList m
toDescList :: Coercible Int k => IMap k a -> [(k,a)]
toDescList (IMap m) = coerce $ IntMap.toDescList m
fromAscList :: Coercible Int k => [(k, a)] -> IMap k a
fromAscList = IMap . IntMap.fromAscList . coerce
fromAscListWith :: Coercible Int k
=> (a -> a -> a) -> [(k,a)] -> IMap k a
fromAscListWith f = IMap . IntMap.fromAscListWith f . coerce
fromAscListWithKey :: Coercible Int k
=> (k -> a -> a -> a) -> [(k,a)] -> IMap k a
fromAscListWithKey f = IMap . IntMap.fromAscListWithKey (f . coerce) . coerce
fromDistinctAscList :: Coercible Int k => [(k, a)] -> IMap k a
fromDistinctAscList = IMap . IntMap.fromDistinctAscList . coerce
filter :: (a -> Bool) -> IMap k a -> IMap k a
filter f = IMap . adapt_m (IntMap.filter f)
filterWithKey :: Coercible Int k => (k -> a -> Bool) -> IMap k a -> IMap k a
filterWithKey f = IMap . adapt_m (IntMap.filterWithKey $ f . coerce)
partition :: (a -> Bool) -> IMap k a -> (IMap k a, IMap k a)
partition f m = coerce $ IntMap.partition f (intmap m)
partitionWithKey :: Coercible Int k
=> (k -> a -> Bool) -> IMap k a -> (IMap k a, IMap k a)
partitionWithKey f m = coerce $ IntMap.partitionWithKey (f . coerce) (intmap m)
mapMaybe :: (a -> Maybe b) -> IMap k a -> IMap k b
mapMaybe f = IMap . IntMap.mapMaybe f . intmap
|