diff options
author | Damien Miller <djm@mindrot.org> | 2013-12-07 11:24:01 +1100 |
---|---|---|
committer | Damien Miller <djm@mindrot.org> | 2013-12-07 11:24:01 +1100 |
commit | 5be9d9e3cbd9c66f24745d25bf2e809c1d158ee0 (patch) | |
tree | d2086d37436014ea44f0f024396a1a8638640b00 /fe25519.c | |
parent | bcd00abd8451f36142ae2ee10cc657202149201e (diff) |
- markus@cvs.openbsd.org 2013/12/06 13:39:49
[authfd.c authfile.c key.c key.h myproposal.h pathnames.h readconf.c]
[servconf.c ssh-agent.c ssh-keygen.c ssh-keyscan.1 ssh-keyscan.c]
[ssh-keysign.c ssh.c ssh_config.5 sshd.8 sshd.c verify.c ssh-ed25519.c]
[sc25519.h sc25519.c hash.c ge25519_base.data ge25519.h ge25519.c]
[fe25519.h fe25519.c ed25519.c crypto_api.h blocks.c]
support ed25519 keys (hostkeys and user identities) using the public
domain ed25519 reference code from SUPERCOP, see
http://ed25519.cr.yp.to/software.html
feedback, help & ok djm@
Diffstat (limited to 'fe25519.c')
-rw-r--r-- | fe25519.c | 331 |
1 files changed, 331 insertions, 0 deletions
diff --git a/fe25519.c b/fe25519.c new file mode 100644 index 000000000..d2efa5051 --- /dev/null +++ b/fe25519.c | |||
@@ -0,0 +1,331 @@ | |||
1 | /* $OpenBSD: */ | ||
2 | |||
3 | /* Public Domain, from supercop-20130419/crypto_sign/ed25519/ref/fe25519.c */ | ||
4 | |||
5 | #define WINDOWSIZE 1 /* Should be 1,2, or 4 */ | ||
6 | #define WINDOWMASK ((1<<WINDOWSIZE)-1) | ||
7 | |||
8 | #include "fe25519.h" | ||
9 | |||
10 | static crypto_uint32 equal(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */ | ||
11 | { | ||
12 | crypto_uint32 x = a ^ b; /* 0: yes; 1..65535: no */ | ||
13 | x -= 1; /* 4294967295: yes; 0..65534: no */ | ||
14 | x >>= 31; /* 1: yes; 0: no */ | ||
15 | return x; | ||
16 | } | ||
17 | |||
18 | static crypto_uint32 ge(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */ | ||
19 | { | ||
20 | unsigned int x = a; | ||
21 | x -= (unsigned int) b; /* 0..65535: yes; 4294901761..4294967295: no */ | ||
22 | x >>= 31; /* 0: yes; 1: no */ | ||
23 | x ^= 1; /* 1: yes; 0: no */ | ||
24 | return x; | ||
25 | } | ||
26 | |||
27 | static crypto_uint32 times19(crypto_uint32 a) | ||
28 | { | ||
29 | return (a << 4) + (a << 1) + a; | ||
30 | } | ||
31 | |||
32 | static crypto_uint32 times38(crypto_uint32 a) | ||
33 | { | ||
34 | return (a << 5) + (a << 2) + (a << 1); | ||
35 | } | ||
36 | |||
37 | static void reduce_add_sub(fe25519 *r) | ||
38 | { | ||
39 | crypto_uint32 t; | ||
40 | int i,rep; | ||
41 | |||
42 | for(rep=0;rep<4;rep++) | ||
43 | { | ||
44 | t = r->v[31] >> 7; | ||
45 | r->v[31] &= 127; | ||
46 | t = times19(t); | ||
47 | r->v[0] += t; | ||
48 | for(i=0;i<31;i++) | ||
49 | { | ||
50 | t = r->v[i] >> 8; | ||
51 | r->v[i+1] += t; | ||
52 | r->v[i] &= 255; | ||
53 | } | ||
54 | } | ||
55 | } | ||
56 | |||
57 | static void reduce_mul(fe25519 *r) | ||
58 | { | ||
59 | crypto_uint32 t; | ||
60 | int i,rep; | ||
61 | |||
62 | for(rep=0;rep<2;rep++) | ||
63 | { | ||
64 | t = r->v[31] >> 7; | ||
65 | r->v[31] &= 127; | ||
66 | t = times19(t); | ||
67 | r->v[0] += t; | ||
68 | for(i=0;i<31;i++) | ||
69 | { | ||
70 | t = r->v[i] >> 8; | ||
71 | r->v[i+1] += t; | ||
72 | r->v[i] &= 255; | ||
73 | } | ||
74 | } | ||
75 | } | ||
76 | |||
77 | /* reduction modulo 2^255-19 */ | ||
78 | void fe25519_freeze(fe25519 *r) | ||
79 | { | ||
80 | int i; | ||
81 | crypto_uint32 m = equal(r->v[31],127); | ||
82 | for(i=30;i>0;i--) | ||
83 | m &= equal(r->v[i],255); | ||
84 | m &= ge(r->v[0],237); | ||
85 | |||
86 | m = -m; | ||
87 | |||
88 | r->v[31] -= m&127; | ||
89 | for(i=30;i>0;i--) | ||
90 | r->v[i] -= m&255; | ||
91 | r->v[0] -= m&237; | ||
92 | } | ||
93 | |||
94 | void fe25519_unpack(fe25519 *r, const unsigned char x[32]) | ||
95 | { | ||
96 | int i; | ||
97 | for(i=0;i<32;i++) r->v[i] = x[i]; | ||
98 | r->v[31] &= 127; | ||
99 | } | ||
100 | |||
101 | /* Assumes input x being reduced below 2^255 */ | ||
102 | void fe25519_pack(unsigned char r[32], const fe25519 *x) | ||
103 | { | ||
104 | int i; | ||
105 | fe25519 y = *x; | ||
106 | fe25519_freeze(&y); | ||
107 | for(i=0;i<32;i++) | ||
108 | r[i] = y.v[i]; | ||
109 | } | ||
110 | |||
111 | int fe25519_iszero(const fe25519 *x) | ||
112 | { | ||
113 | int i; | ||
114 | int r; | ||
115 | fe25519 t = *x; | ||
116 | fe25519_freeze(&t); | ||
117 | r = equal(t.v[0],0); | ||
118 | for(i=1;i<32;i++) | ||
119 | r &= equal(t.v[i],0); | ||
120 | return r; | ||
121 | } | ||
122 | |||
123 | int fe25519_iseq_vartime(const fe25519 *x, const fe25519 *y) | ||
124 | { | ||
125 | int i; | ||
126 | fe25519 t1 = *x; | ||
127 | fe25519 t2 = *y; | ||
128 | fe25519_freeze(&t1); | ||
129 | fe25519_freeze(&t2); | ||
130 | for(i=0;i<32;i++) | ||
131 | if(t1.v[i] != t2.v[i]) return 0; | ||
132 | return 1; | ||
133 | } | ||
134 | |||
135 | void fe25519_cmov(fe25519 *r, const fe25519 *x, unsigned char b) | ||
136 | { | ||
137 | int i; | ||
138 | crypto_uint32 mask = b; | ||
139 | mask = -mask; | ||
140 | for(i=0;i<32;i++) r->v[i] ^= mask & (x->v[i] ^ r->v[i]); | ||
141 | } | ||
142 | |||
143 | unsigned char fe25519_getparity(const fe25519 *x) | ||
144 | { | ||
145 | fe25519 t = *x; | ||
146 | fe25519_freeze(&t); | ||
147 | return t.v[0] & 1; | ||
148 | } | ||
149 | |||
150 | void fe25519_setone(fe25519 *r) | ||
151 | { | ||
152 | int i; | ||
153 | r->v[0] = 1; | ||
154 | for(i=1;i<32;i++) r->v[i]=0; | ||
155 | } | ||
156 | |||
157 | void fe25519_setzero(fe25519 *r) | ||
158 | { | ||
159 | int i; | ||
160 | for(i=0;i<32;i++) r->v[i]=0; | ||
161 | } | ||
162 | |||
163 | void fe25519_neg(fe25519 *r, const fe25519 *x) | ||
164 | { | ||
165 | fe25519 t; | ||
166 | int i; | ||
167 | for(i=0;i<32;i++) t.v[i]=x->v[i]; | ||
168 | fe25519_setzero(r); | ||
169 | fe25519_sub(r, r, &t); | ||
170 | } | ||
171 | |||
172 | void fe25519_add(fe25519 *r, const fe25519 *x, const fe25519 *y) | ||
173 | { | ||
174 | int i; | ||
175 | for(i=0;i<32;i++) r->v[i] = x->v[i] + y->v[i]; | ||
176 | reduce_add_sub(r); | ||
177 | } | ||
178 | |||
179 | void fe25519_sub(fe25519 *r, const fe25519 *x, const fe25519 *y) | ||
180 | { | ||
181 | int i; | ||
182 | crypto_uint32 t[32]; | ||
183 | t[0] = x->v[0] + 0x1da; | ||
184 | t[31] = x->v[31] + 0xfe; | ||
185 | for(i=1;i<31;i++) t[i] = x->v[i] + 0x1fe; | ||
186 | for(i=0;i<32;i++) r->v[i] = t[i] - y->v[i]; | ||
187 | reduce_add_sub(r); | ||
188 | } | ||
189 | |||
190 | void fe25519_mul(fe25519 *r, const fe25519 *x, const fe25519 *y) | ||
191 | { | ||
192 | int i,j; | ||
193 | crypto_uint32 t[63]; | ||
194 | for(i=0;i<63;i++)t[i] = 0; | ||
195 | |||
196 | for(i=0;i<32;i++) | ||
197 | for(j=0;j<32;j++) | ||
198 | t[i+j] += x->v[i] * y->v[j]; | ||
199 | |||
200 | for(i=32;i<63;i++) | ||
201 | r->v[i-32] = t[i-32] + times38(t[i]); | ||
202 | r->v[31] = t[31]; /* result now in r[0]...r[31] */ | ||
203 | |||
204 | reduce_mul(r); | ||
205 | } | ||
206 | |||
207 | void fe25519_square(fe25519 *r, const fe25519 *x) | ||
208 | { | ||
209 | fe25519_mul(r, x, x); | ||
210 | } | ||
211 | |||
212 | void fe25519_invert(fe25519 *r, const fe25519 *x) | ||
213 | { | ||
214 | fe25519 z2; | ||
215 | fe25519 z9; | ||
216 | fe25519 z11; | ||
217 | fe25519 z2_5_0; | ||
218 | fe25519 z2_10_0; | ||
219 | fe25519 z2_20_0; | ||
220 | fe25519 z2_50_0; | ||
221 | fe25519 z2_100_0; | ||
222 | fe25519 t0; | ||
223 | fe25519 t1; | ||
224 | int i; | ||
225 | |||
226 | /* 2 */ fe25519_square(&z2,x); | ||
227 | /* 4 */ fe25519_square(&t1,&z2); | ||
228 | /* 8 */ fe25519_square(&t0,&t1); | ||
229 | /* 9 */ fe25519_mul(&z9,&t0,x); | ||
230 | /* 11 */ fe25519_mul(&z11,&z9,&z2); | ||
231 | /* 22 */ fe25519_square(&t0,&z11); | ||
232 | /* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t0,&z9); | ||
233 | |||
234 | /* 2^6 - 2^1 */ fe25519_square(&t0,&z2_5_0); | ||
235 | /* 2^7 - 2^2 */ fe25519_square(&t1,&t0); | ||
236 | /* 2^8 - 2^3 */ fe25519_square(&t0,&t1); | ||
237 | /* 2^9 - 2^4 */ fe25519_square(&t1,&t0); | ||
238 | /* 2^10 - 2^5 */ fe25519_square(&t0,&t1); | ||
239 | /* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t0,&z2_5_0); | ||
240 | |||
241 | /* 2^11 - 2^1 */ fe25519_square(&t0,&z2_10_0); | ||
242 | /* 2^12 - 2^2 */ fe25519_square(&t1,&t0); | ||
243 | /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); } | ||
244 | /* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t1,&z2_10_0); | ||
245 | |||
246 | /* 2^21 - 2^1 */ fe25519_square(&t0,&z2_20_0); | ||
247 | /* 2^22 - 2^2 */ fe25519_square(&t1,&t0); | ||
248 | /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); } | ||
249 | /* 2^40 - 2^0 */ fe25519_mul(&t0,&t1,&z2_20_0); | ||
250 | |||
251 | /* 2^41 - 2^1 */ fe25519_square(&t1,&t0); | ||
252 | /* 2^42 - 2^2 */ fe25519_square(&t0,&t1); | ||
253 | /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); } | ||
254 | /* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t0,&z2_10_0); | ||
255 | |||
256 | /* 2^51 - 2^1 */ fe25519_square(&t0,&z2_50_0); | ||
257 | /* 2^52 - 2^2 */ fe25519_square(&t1,&t0); | ||
258 | /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); } | ||
259 | /* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t1,&z2_50_0); | ||
260 | |||
261 | /* 2^101 - 2^1 */ fe25519_square(&t1,&z2_100_0); | ||
262 | /* 2^102 - 2^2 */ fe25519_square(&t0,&t1); | ||
263 | /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); } | ||
264 | /* 2^200 - 2^0 */ fe25519_mul(&t1,&t0,&z2_100_0); | ||
265 | |||
266 | /* 2^201 - 2^1 */ fe25519_square(&t0,&t1); | ||
267 | /* 2^202 - 2^2 */ fe25519_square(&t1,&t0); | ||
268 | /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); } | ||
269 | /* 2^250 - 2^0 */ fe25519_mul(&t0,&t1,&z2_50_0); | ||
270 | |||
271 | /* 2^251 - 2^1 */ fe25519_square(&t1,&t0); | ||
272 | /* 2^252 - 2^2 */ fe25519_square(&t0,&t1); | ||
273 | /* 2^253 - 2^3 */ fe25519_square(&t1,&t0); | ||
274 | /* 2^254 - 2^4 */ fe25519_square(&t0,&t1); | ||
275 | /* 2^255 - 2^5 */ fe25519_square(&t1,&t0); | ||
276 | /* 2^255 - 21 */ fe25519_mul(r,&t1,&z11); | ||
277 | } | ||
278 | |||
279 | void fe25519_pow2523(fe25519 *r, const fe25519 *x) | ||
280 | { | ||
281 | fe25519 z2; | ||
282 | fe25519 z9; | ||
283 | fe25519 z11; | ||
284 | fe25519 z2_5_0; | ||
285 | fe25519 z2_10_0; | ||
286 | fe25519 z2_20_0; | ||
287 | fe25519 z2_50_0; | ||
288 | fe25519 z2_100_0; | ||
289 | fe25519 t; | ||
290 | int i; | ||
291 | |||
292 | /* 2 */ fe25519_square(&z2,x); | ||
293 | /* 4 */ fe25519_square(&t,&z2); | ||
294 | /* 8 */ fe25519_square(&t,&t); | ||
295 | /* 9 */ fe25519_mul(&z9,&t,x); | ||
296 | /* 11 */ fe25519_mul(&z11,&z9,&z2); | ||
297 | /* 22 */ fe25519_square(&t,&z11); | ||
298 | /* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t,&z9); | ||
299 | |||
300 | /* 2^6 - 2^1 */ fe25519_square(&t,&z2_5_0); | ||
301 | /* 2^10 - 2^5 */ for (i = 1;i < 5;i++) { fe25519_square(&t,&t); } | ||
302 | /* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t,&z2_5_0); | ||
303 | |||
304 | /* 2^11 - 2^1 */ fe25519_square(&t,&z2_10_0); | ||
305 | /* 2^20 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); } | ||
306 | /* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t,&z2_10_0); | ||
307 | |||
308 | /* 2^21 - 2^1 */ fe25519_square(&t,&z2_20_0); | ||
309 | /* 2^40 - 2^20 */ for (i = 1;i < 20;i++) { fe25519_square(&t,&t); } | ||
310 | /* 2^40 - 2^0 */ fe25519_mul(&t,&t,&z2_20_0); | ||
311 | |||
312 | /* 2^41 - 2^1 */ fe25519_square(&t,&t); | ||
313 | /* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); } | ||
314 | /* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t,&z2_10_0); | ||
315 | |||
316 | /* 2^51 - 2^1 */ fe25519_square(&t,&z2_50_0); | ||
317 | /* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); } | ||
318 | /* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t,&z2_50_0); | ||
319 | |||
320 | /* 2^101 - 2^1 */ fe25519_square(&t,&z2_100_0); | ||
321 | /* 2^200 - 2^100 */ for (i = 1;i < 100;i++) { fe25519_square(&t,&t); } | ||
322 | /* 2^200 - 2^0 */ fe25519_mul(&t,&t,&z2_100_0); | ||
323 | |||
324 | /* 2^201 - 2^1 */ fe25519_square(&t,&t); | ||
325 | /* 2^250 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); } | ||
326 | /* 2^250 - 2^0 */ fe25519_mul(&t,&t,&z2_50_0); | ||
327 | |||
328 | /* 2^251 - 2^1 */ fe25519_square(&t,&t); | ||
329 | /* 2^252 - 2^2 */ fe25519_square(&t,&t); | ||
330 | /* 2^252 - 3 */ fe25519_mul(r,&t,x); | ||
331 | } | ||