summaryrefslogtreecommitdiff
path: root/ge25519.c
diff options
context:
space:
mode:
authorDamien Miller <djm@mindrot.org>2013-12-07 11:24:01 +1100
committerDamien Miller <djm@mindrot.org>2013-12-07 11:24:01 +1100
commit5be9d9e3cbd9c66f24745d25bf2e809c1d158ee0 (patch)
treed2086d37436014ea44f0f024396a1a8638640b00 /ge25519.c
parentbcd00abd8451f36142ae2ee10cc657202149201e (diff)
- markus@cvs.openbsd.org 2013/12/06 13:39:49
[authfd.c authfile.c key.c key.h myproposal.h pathnames.h readconf.c] [servconf.c ssh-agent.c ssh-keygen.c ssh-keyscan.1 ssh-keyscan.c] [ssh-keysign.c ssh.c ssh_config.5 sshd.8 sshd.c verify.c ssh-ed25519.c] [sc25519.h sc25519.c hash.c ge25519_base.data ge25519.h ge25519.c] [fe25519.h fe25519.c ed25519.c crypto_api.h blocks.c] support ed25519 keys (hostkeys and user identities) using the public domain ed25519 reference code from SUPERCOP, see http://ed25519.cr.yp.to/software.html feedback, help & ok djm@
Diffstat (limited to 'ge25519.c')
-rw-r--r--ge25519.c315
1 files changed, 315 insertions, 0 deletions
diff --git a/ge25519.c b/ge25519.c
new file mode 100644
index 000000000..edc97588c
--- /dev/null
+++ b/ge25519.c
@@ -0,0 +1,315 @@
1/* $OpenBSD: */
2
3/* Public Domain, from supercop-20130419/crypto_sign/ed25519/ref/ge25519.c */
4
5#include "fe25519.h"
6#include "sc25519.h"
7#include "ge25519.h"
8
9/*
10 * Arithmetic on the twisted Edwards curve -x^2 + y^2 = 1 + dx^2y^2
11 * with d = -(121665/121666) = 37095705934669439343138083508754565189542113879843219016388785533085940283555
12 * Base point: (15112221349535400772501151409588531511454012693041857206046113283949847762202,46316835694926478169428394003475163141307993866256225615783033603165251855960);
13 */
14
15/* d */
16static const fe25519 ge25519_ecd = {{0xA3, 0x78, 0x59, 0x13, 0xCA, 0x4D, 0xEB, 0x75, 0xAB, 0xD8, 0x41, 0x41, 0x4D, 0x0A, 0x70, 0x00,
17 0x98, 0xE8, 0x79, 0x77, 0x79, 0x40, 0xC7, 0x8C, 0x73, 0xFE, 0x6F, 0x2B, 0xEE, 0x6C, 0x03, 0x52}};
18/* 2*d */
19static const fe25519 ge25519_ec2d = {{0x59, 0xF1, 0xB2, 0x26, 0x94, 0x9B, 0xD6, 0xEB, 0x56, 0xB1, 0x83, 0x82, 0x9A, 0x14, 0xE0, 0x00,
20 0x30, 0xD1, 0xF3, 0xEE, 0xF2, 0x80, 0x8E, 0x19, 0xE7, 0xFC, 0xDF, 0x56, 0xDC, 0xD9, 0x06, 0x24}};
21/* sqrt(-1) */
22static const fe25519 ge25519_sqrtm1 = {{0xB0, 0xA0, 0x0E, 0x4A, 0x27, 0x1B, 0xEE, 0xC4, 0x78, 0xE4, 0x2F, 0xAD, 0x06, 0x18, 0x43, 0x2F,
23 0xA7, 0xD7, 0xFB, 0x3D, 0x99, 0x00, 0x4D, 0x2B, 0x0B, 0xDF, 0xC1, 0x4F, 0x80, 0x24, 0x83, 0x2B}};
24
25#define ge25519_p3 ge25519
26
27typedef struct
28{
29 fe25519 x;
30 fe25519 z;
31 fe25519 y;
32 fe25519 t;
33} ge25519_p1p1;
34
35typedef struct
36{
37 fe25519 x;
38 fe25519 y;
39 fe25519 z;
40} ge25519_p2;
41
42typedef struct
43{
44 fe25519 x;
45 fe25519 y;
46} ge25519_aff;
47
48
49/* Packed coordinates of the base point */
50const ge25519 ge25519_base = {{{0x1A, 0xD5, 0x25, 0x8F, 0x60, 0x2D, 0x56, 0xC9, 0xB2, 0xA7, 0x25, 0x95, 0x60, 0xC7, 0x2C, 0x69,
51 0x5C, 0xDC, 0xD6, 0xFD, 0x31, 0xE2, 0xA4, 0xC0, 0xFE, 0x53, 0x6E, 0xCD, 0xD3, 0x36, 0x69, 0x21}},
52 {{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
53 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66}},
54 {{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
55 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
56 {{0xA3, 0xDD, 0xB7, 0xA5, 0xB3, 0x8A, 0xDE, 0x6D, 0xF5, 0x52, 0x51, 0x77, 0x80, 0x9F, 0xF0, 0x20,
57 0x7D, 0xE3, 0xAB, 0x64, 0x8E, 0x4E, 0xEA, 0x66, 0x65, 0x76, 0x8B, 0xD7, 0x0F, 0x5F, 0x87, 0x67}}};
58
59/* Multiples of the base point in affine representation */
60static const ge25519_aff ge25519_base_multiples_affine[425] = {
61#include "ge25519_base.data"
62};
63
64static void p1p1_to_p2(ge25519_p2 *r, const ge25519_p1p1 *p)
65{
66 fe25519_mul(&r->x, &p->x, &p->t);
67 fe25519_mul(&r->y, &p->y, &p->z);
68 fe25519_mul(&r->z, &p->z, &p->t);
69}
70
71static void p1p1_to_p3(ge25519_p3 *r, const ge25519_p1p1 *p)
72{
73 p1p1_to_p2((ge25519_p2 *)r, p);
74 fe25519_mul(&r->t, &p->x, &p->y);
75}
76
77static void ge25519_mixadd2(ge25519_p3 *r, const ge25519_aff *q)
78{
79 fe25519 a,b,t1,t2,c,d,e,f,g,h,qt;
80 fe25519_mul(&qt, &q->x, &q->y);
81 fe25519_sub(&a, &r->y, &r->x); /* A = (Y1-X1)*(Y2-X2) */
82 fe25519_add(&b, &r->y, &r->x); /* B = (Y1+X1)*(Y2+X2) */
83 fe25519_sub(&t1, &q->y, &q->x);
84 fe25519_add(&t2, &q->y, &q->x);
85 fe25519_mul(&a, &a, &t1);
86 fe25519_mul(&b, &b, &t2);
87 fe25519_sub(&e, &b, &a); /* E = B-A */
88 fe25519_add(&h, &b, &a); /* H = B+A */
89 fe25519_mul(&c, &r->t, &qt); /* C = T1*k*T2 */
90 fe25519_mul(&c, &c, &ge25519_ec2d);
91 fe25519_add(&d, &r->z, &r->z); /* D = Z1*2 */
92 fe25519_sub(&f, &d, &c); /* F = D-C */
93 fe25519_add(&g, &d, &c); /* G = D+C */
94 fe25519_mul(&r->x, &e, &f);
95 fe25519_mul(&r->y, &h, &g);
96 fe25519_mul(&r->z, &g, &f);
97 fe25519_mul(&r->t, &e, &h);
98}
99
100static void add_p1p1(ge25519_p1p1 *r, const ge25519_p3 *p, const ge25519_p3 *q)
101{
102 fe25519 a, b, c, d, t;
103
104 fe25519_sub(&a, &p->y, &p->x); /* A = (Y1-X1)*(Y2-X2) */
105 fe25519_sub(&t, &q->y, &q->x);
106 fe25519_mul(&a, &a, &t);
107 fe25519_add(&b, &p->x, &p->y); /* B = (Y1+X1)*(Y2+X2) */
108 fe25519_add(&t, &q->x, &q->y);
109 fe25519_mul(&b, &b, &t);
110 fe25519_mul(&c, &p->t, &q->t); /* C = T1*k*T2 */
111 fe25519_mul(&c, &c, &ge25519_ec2d);
112 fe25519_mul(&d, &p->z, &q->z); /* D = Z1*2*Z2 */
113 fe25519_add(&d, &d, &d);
114 fe25519_sub(&r->x, &b, &a); /* E = B-A */
115 fe25519_sub(&r->t, &d, &c); /* F = D-C */
116 fe25519_add(&r->z, &d, &c); /* G = D+C */
117 fe25519_add(&r->y, &b, &a); /* H = B+A */
118}
119
120/* See http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#doubling-dbl-2008-hwcd */
121static void dbl_p1p1(ge25519_p1p1 *r, const ge25519_p2 *p)
122{
123 fe25519 a,b,c,d;
124 fe25519_square(&a, &p->x);
125 fe25519_square(&b, &p->y);
126 fe25519_square(&c, &p->z);
127 fe25519_add(&c, &c, &c);
128 fe25519_neg(&d, &a);
129
130 fe25519_add(&r->x, &p->x, &p->y);
131 fe25519_square(&r->x, &r->x);
132 fe25519_sub(&r->x, &r->x, &a);
133 fe25519_sub(&r->x, &r->x, &b);
134 fe25519_add(&r->z, &d, &b);
135 fe25519_sub(&r->t, &r->z, &c);
136 fe25519_sub(&r->y, &d, &b);
137}
138
139/* Constant-time version of: if(b) r = p */
140static void cmov_aff(ge25519_aff *r, const ge25519_aff *p, unsigned char b)
141{
142 fe25519_cmov(&r->x, &p->x, b);
143 fe25519_cmov(&r->y, &p->y, b);
144}
145
146static unsigned char equal(signed char b,signed char c)
147{
148 unsigned char ub = b;
149 unsigned char uc = c;
150 unsigned char x = ub ^ uc; /* 0: yes; 1..255: no */
151 crypto_uint32 y = x; /* 0: yes; 1..255: no */
152 y -= 1; /* 4294967295: yes; 0..254: no */
153 y >>= 31; /* 1: yes; 0: no */
154 return y;
155}
156
157static unsigned char negative(signed char b)
158{
159 unsigned long long x = b; /* 18446744073709551361..18446744073709551615: yes; 0..255: no */
160 x >>= 63; /* 1: yes; 0: no */
161 return x;
162}
163
164static void choose_t(ge25519_aff *t, unsigned long long pos, signed char b)
165{
166 /* constant time */
167 fe25519 v;
168 *t = ge25519_base_multiples_affine[5*pos+0];
169 cmov_aff(t, &ge25519_base_multiples_affine[5*pos+1],equal(b,1) | equal(b,-1));
170 cmov_aff(t, &ge25519_base_multiples_affine[5*pos+2],equal(b,2) | equal(b,-2));
171 cmov_aff(t, &ge25519_base_multiples_affine[5*pos+3],equal(b,3) | equal(b,-3));
172 cmov_aff(t, &ge25519_base_multiples_affine[5*pos+4],equal(b,-4));
173 fe25519_neg(&v, &t->x);
174 fe25519_cmov(&t->x, &v, negative(b));
175}
176
177static void setneutral(ge25519 *r)
178{
179 fe25519_setzero(&r->x);
180 fe25519_setone(&r->y);
181 fe25519_setone(&r->z);
182 fe25519_setzero(&r->t);
183}
184
185/* ********************************************************************
186 * EXPORTED FUNCTIONS
187 ******************************************************************** */
188
189/* return 0 on success, -1 otherwise */
190int ge25519_unpackneg_vartime(ge25519_p3 *r, const unsigned char p[32])
191{
192 unsigned char par;
193 fe25519 t, chk, num, den, den2, den4, den6;
194 fe25519_setone(&r->z);
195 par = p[31] >> 7;
196 fe25519_unpack(&r->y, p);
197 fe25519_square(&num, &r->y); /* x = y^2 */
198 fe25519_mul(&den, &num, &ge25519_ecd); /* den = dy^2 */
199 fe25519_sub(&num, &num, &r->z); /* x = y^2-1 */
200 fe25519_add(&den, &r->z, &den); /* den = dy^2+1 */
201
202 /* Computation of sqrt(num/den) */
203 /* 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8) */
204 fe25519_square(&den2, &den);
205 fe25519_square(&den4, &den2);
206 fe25519_mul(&den6, &den4, &den2);
207 fe25519_mul(&t, &den6, &num);
208 fe25519_mul(&t, &t, &den);
209
210 fe25519_pow2523(&t, &t);
211 /* 2. computation of r->x = t * num * den^3 */
212 fe25519_mul(&t, &t, &num);
213 fe25519_mul(&t, &t, &den);
214 fe25519_mul(&t, &t, &den);
215 fe25519_mul(&r->x, &t, &den);
216
217 /* 3. Check whether sqrt computation gave correct result, multiply by sqrt(-1) if not: */
218 fe25519_square(&chk, &r->x);
219 fe25519_mul(&chk, &chk, &den);
220 if (!fe25519_iseq_vartime(&chk, &num))
221 fe25519_mul(&r->x, &r->x, &ge25519_sqrtm1);
222
223 /* 4. Now we have one of the two square roots, except if input was not a square */
224 fe25519_square(&chk, &r->x);
225 fe25519_mul(&chk, &chk, &den);
226 if (!fe25519_iseq_vartime(&chk, &num))
227 return -1;
228
229 /* 5. Choose the desired square root according to parity: */
230 if(fe25519_getparity(&r->x) != (1-par))
231 fe25519_neg(&r->x, &r->x);
232
233 fe25519_mul(&r->t, &r->x, &r->y);
234 return 0;
235}
236
237void ge25519_pack(unsigned char r[32], const ge25519_p3 *p)
238{
239 fe25519 tx, ty, zi;
240 fe25519_invert(&zi, &p->z);
241 fe25519_mul(&tx, &p->x, &zi);
242 fe25519_mul(&ty, &p->y, &zi);
243 fe25519_pack(r, &ty);
244 r[31] ^= fe25519_getparity(&tx) << 7;
245}
246
247int ge25519_isneutral_vartime(const ge25519_p3 *p)
248{
249 int ret = 1;
250 if(!fe25519_iszero(&p->x)) ret = 0;
251 if(!fe25519_iseq_vartime(&p->y, &p->z)) ret = 0;
252 return ret;
253}
254
255/* computes [s1]p1 + [s2]p2 */
256void ge25519_double_scalarmult_vartime(ge25519_p3 *r, const ge25519_p3 *p1, const sc25519 *s1, const ge25519_p3 *p2, const sc25519 *s2)
257{
258 ge25519_p1p1 tp1p1;
259 ge25519_p3 pre[16];
260 unsigned char b[127];
261 int i;
262
263 /* precomputation s2 s1 */
264 setneutral(pre); /* 00 00 */
265 pre[1] = *p1; /* 00 01 */
266 dbl_p1p1(&tp1p1,(ge25519_p2 *)p1); p1p1_to_p3( &pre[2], &tp1p1); /* 00 10 */
267 add_p1p1(&tp1p1,&pre[1], &pre[2]); p1p1_to_p3( &pre[3], &tp1p1); /* 00 11 */
268 pre[4] = *p2; /* 01 00 */
269 add_p1p1(&tp1p1,&pre[1], &pre[4]); p1p1_to_p3( &pre[5], &tp1p1); /* 01 01 */
270 add_p1p1(&tp1p1,&pre[2], &pre[4]); p1p1_to_p3( &pre[6], &tp1p1); /* 01 10 */
271 add_p1p1(&tp1p1,&pre[3], &pre[4]); p1p1_to_p3( &pre[7], &tp1p1); /* 01 11 */
272 dbl_p1p1(&tp1p1,(ge25519_p2 *)p2); p1p1_to_p3( &pre[8], &tp1p1); /* 10 00 */
273 add_p1p1(&tp1p1,&pre[1], &pre[8]); p1p1_to_p3( &pre[9], &tp1p1); /* 10 01 */
274 dbl_p1p1(&tp1p1,(ge25519_p2 *)&pre[5]); p1p1_to_p3(&pre[10], &tp1p1); /* 10 10 */
275 add_p1p1(&tp1p1,&pre[3], &pre[8]); p1p1_to_p3(&pre[11], &tp1p1); /* 10 11 */
276 add_p1p1(&tp1p1,&pre[4], &pre[8]); p1p1_to_p3(&pre[12], &tp1p1); /* 11 00 */
277 add_p1p1(&tp1p1,&pre[1],&pre[12]); p1p1_to_p3(&pre[13], &tp1p1); /* 11 01 */
278 add_p1p1(&tp1p1,&pre[2],&pre[12]); p1p1_to_p3(&pre[14], &tp1p1); /* 11 10 */
279 add_p1p1(&tp1p1,&pre[3],&pre[12]); p1p1_to_p3(&pre[15], &tp1p1); /* 11 11 */
280
281 sc25519_2interleave2(b,s1,s2);
282
283 /* scalar multiplication */
284 *r = pre[b[126]];
285 for(i=125;i>=0;i--)
286 {
287 dbl_p1p1(&tp1p1, (ge25519_p2 *)r);
288 p1p1_to_p2((ge25519_p2 *) r, &tp1p1);
289 dbl_p1p1(&tp1p1, (ge25519_p2 *)r);
290 if(b[i]!=0)
291 {
292 p1p1_to_p3(r, &tp1p1);
293 add_p1p1(&tp1p1, r, &pre[b[i]]);
294 }
295 if(i != 0) p1p1_to_p2((ge25519_p2 *)r, &tp1p1);
296 else p1p1_to_p3(r, &tp1p1);
297 }
298}
299
300void ge25519_scalarmult_base(ge25519_p3 *r, const sc25519 *s)
301{
302 signed char b[85];
303 int i;
304 ge25519_aff t;
305 sc25519_window3(b,s);
306
307 choose_t((ge25519_aff *)r, 0, b[0]);
308 fe25519_setone(&r->z);
309 fe25519_mul(&r->t, &r->x, &r->y);
310 for(i=1;i<85;i++)
311 {
312 choose_t(&t, (unsigned long long) i, b[i]);
313 ge25519_mixadd2(r, &t);
314 }
315}