summaryrefslogtreecommitdiff
path: root/openbsd-compat/md5.c
diff options
context:
space:
mode:
authorColin Watson <cjwatson@debian.org>2015-08-19 14:23:51 +0100
committerColin Watson <cjwatson@debian.org>2015-08-19 16:48:11 +0100
commit0f0841b2d28b7463267d4d91577e72e3340a1d3a (patch)
treeba55fcd2b6e2cc22b30f5afb561dbb3da4c8b6c7 /openbsd-compat/md5.c
parentf2a5f5dae656759efb0b76c3d94890b65c197a02 (diff)
parent8698446b972003b63dfe5dcbdb86acfe986afb85 (diff)
New upstream release (6.8p1).
Diffstat (limited to 'openbsd-compat/md5.c')
-rw-r--r--openbsd-compat/md5.c251
1 files changed, 251 insertions, 0 deletions
diff --git a/openbsd-compat/md5.c b/openbsd-compat/md5.c
new file mode 100644
index 000000000..195ab515d
--- /dev/null
+++ b/openbsd-compat/md5.c
@@ -0,0 +1,251 @@
1/* $OpenBSD: md5.c,v 1.9 2014/01/08 06:14:57 tedu Exp $ */
2
3/*
4 * This code implements the MD5 message-digest algorithm.
5 * The algorithm is due to Ron Rivest. This code was
6 * written by Colin Plumb in 1993, no copyright is claimed.
7 * This code is in the public domain; do with it what you wish.
8 *
9 * Equivalent code is available from RSA Data Security, Inc.
10 * This code has been tested against that, and is equivalent,
11 * except that you don't need to include two pages of legalese
12 * with every copy.
13 *
14 * To compute the message digest of a chunk of bytes, declare an
15 * MD5Context structure, pass it to MD5Init, call MD5Update as
16 * needed on buffers full of bytes, and then call MD5Final, which
17 * will fill a supplied 16-byte array with the digest.
18 */
19
20#include "includes.h"
21
22#ifndef WITH_OPENSSL
23
24#include <sys/types.h>
25#include <string.h>
26#include "md5.h"
27
28#define PUT_64BIT_LE(cp, value) do { \
29 (cp)[7] = (value) >> 56; \
30 (cp)[6] = (value) >> 48; \
31 (cp)[5] = (value) >> 40; \
32 (cp)[4] = (value) >> 32; \
33 (cp)[3] = (value) >> 24; \
34 (cp)[2] = (value) >> 16; \
35 (cp)[1] = (value) >> 8; \
36 (cp)[0] = (value); } while (0)
37
38#define PUT_32BIT_LE(cp, value) do { \
39 (cp)[3] = (value) >> 24; \
40 (cp)[2] = (value) >> 16; \
41 (cp)[1] = (value) >> 8; \
42 (cp)[0] = (value); } while (0)
43
44static u_int8_t PADDING[MD5_BLOCK_LENGTH] = {
45 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
46 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
47 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
48};
49
50/*
51 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
52 * initialization constants.
53 */
54void
55MD5Init(MD5_CTX *ctx)
56{
57 ctx->count = 0;
58 ctx->state[0] = 0x67452301;
59 ctx->state[1] = 0xefcdab89;
60 ctx->state[2] = 0x98badcfe;
61 ctx->state[3] = 0x10325476;
62}
63
64/*
65 * Update context to reflect the concatenation of another buffer full
66 * of bytes.
67 */
68void
69MD5Update(MD5_CTX *ctx, const unsigned char *input, size_t len)
70{
71 size_t have, need;
72
73 /* Check how many bytes we already have and how many more we need. */
74 have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
75 need = MD5_BLOCK_LENGTH - have;
76
77 /* Update bitcount */
78 ctx->count += (u_int64_t)len << 3;
79
80 if (len >= need) {
81 if (have != 0) {
82 memcpy(ctx->buffer + have, input, need);
83 MD5Transform(ctx->state, ctx->buffer);
84 input += need;
85 len -= need;
86 have = 0;
87 }
88
89 /* Process data in MD5_BLOCK_LENGTH-byte chunks. */
90 while (len >= MD5_BLOCK_LENGTH) {
91 MD5Transform(ctx->state, input);
92 input += MD5_BLOCK_LENGTH;
93 len -= MD5_BLOCK_LENGTH;
94 }
95 }
96
97 /* Handle any remaining bytes of data. */
98 if (len != 0)
99 memcpy(ctx->buffer + have, input, len);
100}
101
102/*
103 * Pad pad to 64-byte boundary with the bit pattern
104 * 1 0* (64-bit count of bits processed, MSB-first)
105 */
106void
107MD5Pad(MD5_CTX *ctx)
108{
109 u_int8_t count[8];
110 size_t padlen;
111
112 /* Convert count to 8 bytes in little endian order. */
113 PUT_64BIT_LE(count, ctx->count);
114
115 /* Pad out to 56 mod 64. */
116 padlen = MD5_BLOCK_LENGTH -
117 ((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
118 if (padlen < 1 + 8)
119 padlen += MD5_BLOCK_LENGTH;
120 MD5Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
121 MD5Update(ctx, count, 8);
122}
123
124/*
125 * Final wrapup--call MD5Pad, fill in digest and zero out ctx.
126 */
127void
128MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx)
129{
130 int i;
131
132 MD5Pad(ctx);
133 for (i = 0; i < 4; i++)
134 PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
135 memset(ctx, 0, sizeof(*ctx));
136}
137
138
139/* The four core functions - F1 is optimized somewhat */
140
141/* #define F1(x, y, z) (x & y | ~x & z) */
142#define F1(x, y, z) (z ^ (x & (y ^ z)))
143#define F2(x, y, z) F1(z, x, y)
144#define F3(x, y, z) (x ^ y ^ z)
145#define F4(x, y, z) (y ^ (x | ~z))
146
147/* This is the central step in the MD5 algorithm. */
148#define MD5STEP(f, w, x, y, z, data, s) \
149 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
150
151/*
152 * The core of the MD5 algorithm, this alters an existing MD5 hash to
153 * reflect the addition of 16 longwords of new data. MD5Update blocks
154 * the data and converts bytes into longwords for this routine.
155 */
156void
157MD5Transform(u_int32_t state[4], const u_int8_t block[MD5_BLOCK_LENGTH])
158{
159 u_int32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];
160
161#if BYTE_ORDER == LITTLE_ENDIAN
162 memcpy(in, block, sizeof(in));
163#else
164 for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) {
165 in[a] = (u_int32_t)(
166 (u_int32_t)(block[a * 4 + 0]) |
167 (u_int32_t)(block[a * 4 + 1]) << 8 |
168 (u_int32_t)(block[a * 4 + 2]) << 16 |
169 (u_int32_t)(block[a * 4 + 3]) << 24);
170 }
171#endif
172
173 a = state[0];
174 b = state[1];
175 c = state[2];
176 d = state[3];
177
178 MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7);
179 MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
180 MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
181 MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
182 MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7);
183 MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
184 MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
185 MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
186 MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7);
187 MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
188 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
189 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
190 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
191 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
192 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
193 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
194
195 MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5);
196 MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9);
197 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
198 MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
199 MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5);
200 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
201 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
202 MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
203 MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5);
204 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
205 MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
206 MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
207 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
208 MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9);
209 MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
210 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
211
212 MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4);
213 MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
214 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
215 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
216 MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4);
217 MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
218 MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
219 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
220 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
221 MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
222 MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
223 MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
224 MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4);
225 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
226 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
227 MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23);
228
229 MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6);
230 MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10);
231 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
232 MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21);
233 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
234 MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10);
235 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
236 MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21);
237 MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f, 6);
238 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
239 MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15);
240 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
241 MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82, 6);
242 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
243 MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15);
244 MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21);
245
246 state[0] += a;
247 state[1] += b;
248 state[2] += c;
249 state[3] += d;
250}
251#endif /* !WITH_OPENSSL */