1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
/*
* crypto_core/try.c version 20090118
* D. J. Bernstein
* Public domain.
*/
#include <stdlib.h>
#include "crypto_core.h"
extern unsigned char *alignedcalloc(unsigned long long);
const char *primitiveimplementation = crypto_core_IMPLEMENTATION;
static unsigned char *h;
static unsigned char *n;
static unsigned char *k;
static unsigned char *c;
static unsigned char *h2;
static unsigned char *n2;
static unsigned char *k2;
static unsigned char *c2;
#define hlen crypto_core_OUTPUTBYTES
#define nlen crypto_core_INPUTBYTES
#define klen crypto_core_KEYBYTES
#define clen crypto_core_CONSTBYTES
void preallocate(void)
{
}
void allocate(void)
{
h = alignedcalloc(hlen);
n = alignedcalloc(nlen);
k = alignedcalloc(klen);
c = alignedcalloc(clen);
h2 = alignedcalloc(hlen);
n2 = alignedcalloc(nlen + crypto_core_OUTPUTBYTES);
k2 = alignedcalloc(klen + crypto_core_OUTPUTBYTES);
c2 = alignedcalloc(clen + crypto_core_OUTPUTBYTES);
}
void predoit(void)
{
}
void doit(void)
{
crypto_core(h,n,k,c);
}
static unsigned char newbyte(void)
{
unsigned long long x;
long long j;
x = 8675309;
for (j = 0;j < hlen;++j) { x += h[j]; x *= x; x += (x >> 31); }
for (j = 0;j < nlen;++j) { x += n[j]; x *= x; x += (x >> 31); }
for (j = 0;j < klen;++j) { x += k[j]; x *= x; x += (x >> 31); }
for (j = 0;j < clen;++j) { x += c[j]; x *= x; x += (x >> 31); }
for (j = 0;j < 100;++j) { x += j ; x *= x; x += (x >> 31); }
return x;
}
char checksum[hlen * 2 + 1];
const char *checksum_compute(void)
{
long long i;
long long j;
for (i = 0;i < 100;++i) {
for (j = -16;j < 0;++j) h[j] = random();
for (j = hlen;j < hlen + 16;++j) h[j] = random();
for (j = -16;j < hlen + 16;++j) h2[j] = h[j];
for (j = -16;j < 0;++j) n[j] = random();
for (j = nlen;j < nlen + 16;++j) n[j] = random();
for (j = -16;j < nlen + 16;++j) n2[j] = n[j];
for (j = -16;j < 0;++j) k[j] = random();
for (j = klen;j < klen + 16;++j) k[j] = random();
for (j = -16;j < klen + 16;++j) k2[j] = k[j];
for (j = -16;j < 0;++j) c[j] = random();
for (j = clen;j < clen + 16;++j) c[j] = random();
for (j = -16;j < clen + 16;++j) c2[j] = c[j];
if (crypto_core(h,n,k,c) != 0) return "crypto_core returns nonzero";
for (j = -16;j < 0;++j) if (h2[j] != h[j]) return "crypto_core writes before output";
for (j = hlen;j < hlen + 16;++j) if (h2[j] != h[j]) return "crypto_core writes after output";
for (j = -16;j < klen + 16;++j) if (k2[j] != k[j]) return "crypto_core writes to k";
for (j = -16;j < nlen + 16;++j) if (n2[j] != n[j]) return "crypto_core writes to n";
for (j = -16;j < clen + 16;++j) if (c2[j] != c[j]) return "crypto_core writes to c";
if (crypto_core(n2,n2,k,c) != 0) return "crypto_core returns nonzero";
for (j = 0;j < hlen;++j) if (h[j] != n2[j]) return "crypto_core does not handle n overlap";
for (j = 0;j < hlen;++j) n2[j] = n[j];
if (crypto_core(k2,n2,k2,c) != 0) return "crypto_core returns nonzero";
for (j = 0;j < hlen;++j) if (h[j] != k2[j]) return "crypto_core does not handle k overlap";
for (j = 0;j < hlen;++j) k2[j] = k[j];
if (crypto_core(c2,n2,k2,c2) != 0) return "crypto_core returns nonzero";
for (j = 0;j < hlen;++j) if (h[j] != c2[j]) return "crypto_core does not handle c overlap";
for (j = 0;j < hlen;++j) c2[j] = c[j];
for (j = 0;j < nlen;++j) n[j] = newbyte();
if (crypto_core(h,n,k,c) != 0) return "crypto_core returns nonzero";
for (j = 0;j < klen;++j) k[j] = newbyte();
if (crypto_core(h,n,k,c) != 0) return "crypto_core returns nonzero";
for (j = 0;j < clen;++j) c[j] = newbyte();
}
for (i = 0;i < hlen;++i) {
checksum[2 * i] = "0123456789abcdef"[15 & (h[i] >> 4)];
checksum[2 * i + 1] = "0123456789abcdef"[15 & h[i]];
}
checksum[2 * i] = 0;
return 0;
}
|