summaryrefslogtreecommitdiff
path: root/lib/Data/Packed/Matrix.hs
diff options
context:
space:
mode:
authorAlberto Ruiz <aruiz@um.es>2014-05-08 08:48:12 +0200
committerAlberto Ruiz <aruiz@um.es>2014-05-08 08:48:12 +0200
commit1925c123d7d8184a1d2ddc0a413e0fd2776e1083 (patch)
treefad79f909d9c3be53d68e6ebd67202650536d387 /lib/Data/Packed/Matrix.hs
parenteb3f702d065a4a967bb754977233e6eec408fd1f (diff)
empty hmatrix-base
Diffstat (limited to 'lib/Data/Packed/Matrix.hs')
-rw-r--r--lib/Data/Packed/Matrix.hs490
1 files changed, 0 insertions, 490 deletions
diff --git a/lib/Data/Packed/Matrix.hs b/lib/Data/Packed/Matrix.hs
deleted file mode 100644
index d94d167..0000000
--- a/lib/Data/Packed/Matrix.hs
+++ /dev/null
@@ -1,490 +0,0 @@
1{-# LANGUAGE TypeFamilies #-}
2{-# LANGUAGE FlexibleContexts #-}
3{-# LANGUAGE FlexibleInstances #-}
4{-# LANGUAGE MultiParamTypeClasses #-}
5{-# LANGUAGE CPP #-}
6
7-----------------------------------------------------------------------------
8-- |
9-- Module : Data.Packed.Matrix
10-- Copyright : (c) Alberto Ruiz 2007-10
11-- License : GPL
12--
13-- Maintainer : Alberto Ruiz <aruiz@um.es>
14-- Stability : provisional
15--
16-- A Matrix representation suitable for numerical computations using LAPACK and GSL.
17--
18-- This module provides basic functions for manipulation of structure.
19
20-----------------------------------------------------------------------------
21{-# OPTIONS_HADDOCK hide #-}
22
23module Data.Packed.Matrix (
24 Matrix,
25 Element,
26 rows,cols,
27 (><),
28 trans,
29 reshape, flatten,
30 fromLists, toLists, buildMatrix,
31 (@@>),
32 asRow, asColumn,
33 fromRows, toRows, fromColumns, toColumns,
34 fromBlocks, diagBlock, toBlocks, toBlocksEvery,
35 repmat,
36 flipud, fliprl,
37 subMatrix, takeRows, dropRows, takeColumns, dropColumns,
38 extractRows, extractColumns,
39 diagRect, takeDiag,
40 mapMatrix, mapMatrixWithIndex, mapMatrixWithIndexM, mapMatrixWithIndexM_,
41 liftMatrix, liftMatrix2, liftMatrix2Auto,fromArray2D
42) where
43
44import Data.Packed.Internal
45import qualified Data.Packed.ST as ST
46import Data.Array
47
48import Data.List(transpose,intersperse)
49import Foreign.Storable(Storable)
50import Control.Monad(liftM)
51
52-------------------------------------------------------------------
53
54#ifdef BINARY
55
56import Data.Binary
57import Control.Monad(replicateM)
58
59instance (Binary a, Element a, Storable a) => Binary (Matrix a) where
60 put m = do
61 let r = rows m
62 let c = cols m
63 put r
64 put c
65 mapM_ (\i -> mapM_ (\j -> put $ m @@> (i,j)) [0..(c-1)]) [0..(r-1)]
66 get = do
67 r <- get
68 c <- get
69 xs <- replicateM r $ replicateM c get
70 return $ fromLists xs
71
72#endif
73
74-------------------------------------------------------------------
75
76instance (Show a, Element a) => (Show (Matrix a)) where
77 show m | rows m == 0 || cols m == 0 = sizes m ++" []"
78 show m = (sizes m++) . dsp . map (map show) . toLists $ m
79
80sizes m = "("++show (rows m)++"><"++show (cols m)++")\n"
81
82dsp as = (++" ]") . (" ["++) . init . drop 2 . unlines . map (" , "++) . map unwords' $ transpose mtp
83 where
84 mt = transpose as
85 longs = map (maximum . map length) mt
86 mtp = zipWith (\a b -> map (pad a) b) longs mt
87 pad n str = replicate (n - length str) ' ' ++ str
88 unwords' = concat . intersperse ", "
89
90------------------------------------------------------------------
91
92instance (Element a, Read a) => Read (Matrix a) where
93 readsPrec _ s = [((rs><cs) . read $ listnums, rest)]
94 where (thing,rest) = breakAt ']' s
95 (dims,listnums) = breakAt ')' thing
96 cs = read . init . fst. breakAt ')' . snd . breakAt '<' $ dims
97 rs = read . snd . breakAt '(' .init . fst . breakAt '>' $ dims
98
99
100breakAt c l = (a++[c],tail b) where
101 (a,b) = break (==c) l
102
103------------------------------------------------------------------
104
105-- | creates a matrix from a vertical list of matrices
106joinVert :: Element t => [Matrix t] -> Matrix t
107joinVert [] = emptyM 0 0
108joinVert ms = case common cols ms of
109 Nothing -> error "(impossible) joinVert on matrices with different number of columns"
110 Just c -> matrixFromVector RowMajor (sum (map rows ms)) c $ vjoin (map flatten ms)
111
112-- | creates a matrix from a horizontal list of matrices
113joinHoriz :: Element t => [Matrix t] -> Matrix t
114joinHoriz ms = trans. joinVert . map trans $ ms
115
116{- | Create a matrix from blocks given as a list of lists of matrices.
117
118Single row-column components are automatically expanded to match the
119corresponding common row and column:
120
121@
122disp = putStr . dispf 2
123@
124
125>>> disp $ fromBlocks [[ident 5, 7, row[10,20]], [3, diagl[1,2,3], 0]]
1268x10
1271 0 0 0 0 7 7 7 10 20
1280 1 0 0 0 7 7 7 10 20
1290 0 1 0 0 7 7 7 10 20
1300 0 0 1 0 7 7 7 10 20
1310 0 0 0 1 7 7 7 10 20
1323 3 3 3 3 1 0 0 0 0
1333 3 3 3 3 0 2 0 0 0
1343 3 3 3 3 0 0 3 0 0
135
136-}
137fromBlocks :: Element t => [[Matrix t]] -> Matrix t
138fromBlocks = fromBlocksRaw . adaptBlocks
139
140fromBlocksRaw mms = joinVert . map joinHoriz $ mms
141
142adaptBlocks ms = ms' where
143 bc = case common length ms of
144 Just c -> c
145 Nothing -> error "fromBlocks requires rectangular [[Matrix]]"
146 rs = map (compatdim . map rows) ms
147 cs = map (compatdim . map cols) (transpose ms)
148 szs = sequence [rs,cs]
149 ms' = splitEvery bc $ zipWith g szs (concat ms)
150
151 g [Just nr,Just nc] m
152 | nr == r && nc == c = m
153 | r == 1 && c == 1 = matrixFromVector RowMajor nr nc (constantD x (nr*nc))
154 | r == 1 = fromRows (replicate nr (flatten m))
155 | otherwise = fromColumns (replicate nc (flatten m))
156 where
157 r = rows m
158 c = cols m
159 x = m@@>(0,0)
160 g _ _ = error "inconsistent dimensions in fromBlocks"
161
162
163--------------------------------------------------------------------------------
164
165{- | create a block diagonal matrix
166
167>>> disp 2 $ diagBlock [konst 1 (2,2), konst 2 (3,5), col [5,7]]
1687x8
1691 1 0 0 0 0 0 0
1701 1 0 0 0 0 0 0
1710 0 2 2 2 2 2 0
1720 0 2 2 2 2 2 0
1730 0 2 2 2 2 2 0
1740 0 0 0 0 0 0 5
1750 0 0 0 0 0 0 7
176
177>>> diagBlock [(0><4)[], konst 2 (2,3)] :: Matrix Double
178(2><7)
179 [ 0.0, 0.0, 0.0, 0.0, 2.0, 2.0, 2.0
180 , 0.0, 0.0, 0.0, 0.0, 2.0, 2.0, 2.0 ]
181
182-}
183diagBlock :: (Element t, Num t) => [Matrix t] -> Matrix t
184diagBlock ms = fromBlocks $ zipWith f ms [0..]
185 where
186 f m k = take n $ replicate k z ++ m : repeat z
187 n = length ms
188 z = (1><1) [0]
189
190--------------------------------------------------------------------------------
191
192
193-- | Reverse rows
194flipud :: Element t => Matrix t -> Matrix t
195flipud m = extractRows [r-1,r-2 .. 0] $ m
196 where
197 r = rows m
198
199-- | Reverse columns
200fliprl :: Element t => Matrix t -> Matrix t
201fliprl m = extractColumns [c-1,c-2 .. 0] $ m
202 where
203 c = cols m
204
205------------------------------------------------------------
206
207{- | creates a rectangular diagonal matrix:
208
209>>> diagRect 7 (fromList [10,20,30]) 4 5 :: Matrix Double
210(4><5)
211 [ 10.0, 7.0, 7.0, 7.0, 7.0
212 , 7.0, 20.0, 7.0, 7.0, 7.0
213 , 7.0, 7.0, 30.0, 7.0, 7.0
214 , 7.0, 7.0, 7.0, 7.0, 7.0 ]
215
216-}
217diagRect :: (Storable t) => t -> Vector t -> Int -> Int -> Matrix t
218diagRect z v r c = ST.runSTMatrix $ do
219 m <- ST.newMatrix z r c
220 let d = min r c `min` (dim v)
221 mapM_ (\k -> ST.writeMatrix m k k (v@>k)) [0..d-1]
222 return m
223
224-- | extracts the diagonal from a rectangular matrix
225takeDiag :: (Element t) => Matrix t -> Vector t
226takeDiag m = fromList [flatten m `at` (k*cols m+k) | k <- [0 .. min (rows m) (cols m) -1]]
227
228------------------------------------------------------------
229
230{- | An easy way to create a matrix:
231
232>>> (2><3)[2,4,7,-3,11,0]
233(2><3)
234 [ 2.0, 4.0, 7.0
235 , -3.0, 11.0, 0.0 ]
236
237This is the format produced by the instances of Show (Matrix a), which
238can also be used for input.
239
240The input list is explicitly truncated, so that it can
241safely be used with lists that are too long (like infinite lists).
242
243>>> (2><3)[1..]
244(2><3)
245 [ 1.0, 2.0, 3.0
246 , 4.0, 5.0, 6.0 ]
247
248
249-}
250(><) :: (Storable a) => Int -> Int -> [a] -> Matrix a
251r >< c = f where
252 f l | dim v == r*c = matrixFromVector RowMajor r c v
253 | otherwise = error $ "inconsistent list size = "
254 ++show (dim v) ++" in ("++show r++"><"++show c++")"
255 where v = fromList $ take (r*c) l
256
257----------------------------------------------------------------
258
259-- | Creates a matrix with the first n rows of another matrix
260takeRows :: Element t => Int -> Matrix t -> Matrix t
261takeRows n mt = subMatrix (0,0) (n, cols mt) mt
262-- | Creates a copy of a matrix without the first n rows
263dropRows :: Element t => Int -> Matrix t -> Matrix t
264dropRows n mt = subMatrix (n,0) (rows mt - n, cols mt) mt
265-- |Creates a matrix with the first n columns of another matrix
266takeColumns :: Element t => Int -> Matrix t -> Matrix t
267takeColumns n mt = subMatrix (0,0) (rows mt, n) mt
268-- | Creates a copy of a matrix without the first n columns
269dropColumns :: Element t => Int -> Matrix t -> Matrix t
270dropColumns n mt = subMatrix (0,n) (rows mt, cols mt - n) mt
271
272----------------------------------------------------------------
273
274{- | Creates a 'Matrix' from a list of lists (considered as rows).
275
276>>> fromLists [[1,2],[3,4],[5,6]]
277(3><2)
278 [ 1.0, 2.0
279 , 3.0, 4.0
280 , 5.0, 6.0 ]
281
282-}
283fromLists :: Element t => [[t]] -> Matrix t
284fromLists = fromRows . map fromList
285
286-- | creates a 1-row matrix from a vector
287--
288-- >>> asRow (fromList [1..5])
289-- (1><5)
290-- [ 1.0, 2.0, 3.0, 4.0, 5.0 ]
291--
292asRow :: Storable a => Vector a -> Matrix a
293asRow v = reshape (dim v) v
294
295-- | creates a 1-column matrix from a vector
296--
297-- >>> asColumn (fromList [1..5])
298-- (5><1)
299-- [ 1.0
300-- , 2.0
301-- , 3.0
302-- , 4.0
303-- , 5.0 ]
304--
305asColumn :: Storable a => Vector a -> Matrix a
306asColumn = trans . asRow
307
308
309
310{- | creates a Matrix of the specified size using the supplied function to
311 to map the row\/column position to the value at that row\/column position.
312
313@> buildMatrix 3 4 (\\(r,c) -> fromIntegral r * fromIntegral c)
314(3><4)
315 [ 0.0, 0.0, 0.0, 0.0, 0.0
316 , 0.0, 1.0, 2.0, 3.0, 4.0
317 , 0.0, 2.0, 4.0, 6.0, 8.0]@
318
319Hilbert matrix of order N:
320
321@hilb n = buildMatrix n n (\\(i,j)->1/(fromIntegral i + fromIntegral j +1))@
322
323-}
324buildMatrix :: Element a => Int -> Int -> ((Int, Int) -> a) -> Matrix a
325buildMatrix rc cc f =
326 fromLists $ map (map f)
327 $ map (\ ri -> map (\ ci -> (ri, ci)) [0 .. (cc - 1)]) [0 .. (rc - 1)]
328
329-----------------------------------------------------
330
331fromArray2D :: (Storable e) => Array (Int, Int) e -> Matrix e
332fromArray2D m = (r><c) (elems m)
333 where ((r0,c0),(r1,c1)) = bounds m
334 r = r1-r0+1
335 c = c1-c0+1
336
337
338-- | rearranges the rows of a matrix according to the order given in a list of integers.
339extractRows :: Element t => [Int] -> Matrix t -> Matrix t
340extractRows [] m = emptyM 0 (cols m)
341extractRows l m = fromRows $ extract (toRows m) l
342 where
343 extract l' is = [l'!!i | i<- map verify is]
344 verify k
345 | k >= 0 && k < rows m = k
346 | otherwise = error $ "can't extract row "
347 ++show k++" in list " ++ show l ++ " from matrix " ++ shSize m
348
349-- | rearranges the rows of a matrix according to the order given in a list of integers.
350extractColumns :: Element t => [Int] -> Matrix t -> Matrix t
351extractColumns l m = trans . extractRows (map verify l) . trans $ m
352 where
353 verify k
354 | k >= 0 && k < cols m = k
355 | otherwise = error $ "can't extract column "
356 ++show k++" in list " ++ show l ++ " from matrix " ++ shSize m
357
358
359
360{- | creates matrix by repetition of a matrix a given number of rows and columns
361
362>>> repmat (ident 2) 2 3
363(4><6)
364 [ 1.0, 0.0, 1.0, 0.0, 1.0, 0.0
365 , 0.0, 1.0, 0.0, 1.0, 0.0, 1.0
366 , 1.0, 0.0, 1.0, 0.0, 1.0, 0.0
367 , 0.0, 1.0, 0.0, 1.0, 0.0, 1.0 ]
368
369-}
370repmat :: (Element t) => Matrix t -> Int -> Int -> Matrix t
371repmat m r c
372 | r == 0 || c == 0 = emptyM (r*rows m) (c*cols m)
373 | otherwise = fromBlocks $ replicate r $ replicate c $ m
374
375-- | A version of 'liftMatrix2' which automatically adapt matrices with a single row or column to match the dimensions of the other matrix.
376liftMatrix2Auto :: (Element t, Element a, Element b) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t
377liftMatrix2Auto f m1 m2
378 | compat' m1 m2 = lM f m1 m2
379 | ok = lM f m1' m2'
380 | otherwise = error $ "nonconformable matrices in liftMatrix2Auto: " ++ shSize m1 ++ ", " ++ shSize m2
381 where
382 (r1,c1) = size m1
383 (r2,c2) = size m2
384 r = max r1 r2
385 c = max c1 c2
386 r0 = min r1 r2
387 c0 = min c1 c2
388 ok = r0 == 1 || r1 == r2 && c0 == 1 || c1 == c2
389 m1' = conformMTo (r,c) m1
390 m2' = conformMTo (r,c) m2
391
392-- FIXME do not flatten if equal order
393lM f m1 m2 = matrixFromVector
394 RowMajor
395 (max (rows m1) (rows m2))
396 (max (cols m1) (cols m2))
397 (f (flatten m1) (flatten m2))
398
399compat' :: Matrix a -> Matrix b -> Bool
400compat' m1 m2 = s1 == (1,1) || s2 == (1,1) || s1 == s2
401 where
402 s1 = size m1
403 s2 = size m2
404
405------------------------------------------------------------
406
407toBlockRows [r] m | r == rows m = [m]
408toBlockRows rs m = map (reshape (cols m)) (takesV szs (flatten m))
409 where szs = map (* cols m) rs
410
411toBlockCols [c] m | c == cols m = [m]
412toBlockCols cs m = map trans . toBlockRows cs . trans $ m
413
414-- | Partition a matrix into blocks with the given numbers of rows and columns.
415-- The remaining rows and columns are discarded.
416toBlocks :: (Element t) => [Int] -> [Int] -> Matrix t -> [[Matrix t]]
417toBlocks rs cs m = map (toBlockCols cs) . toBlockRows rs $ m
418
419-- | Fully partition a matrix into blocks of the same size. If the dimensions are not
420-- a multiple of the given size the last blocks will be smaller.
421toBlocksEvery :: (Element t) => Int -> Int -> Matrix t -> [[Matrix t]]
422toBlocksEvery r c m
423 | r < 1 || c < 1 = error $ "toBlocksEvery expects block sizes > 0, given "++show r++" and "++ show c
424 | otherwise = toBlocks rs cs m
425 where
426 (qr,rr) = rows m `divMod` r
427 (qc,rc) = cols m `divMod` c
428 rs = replicate qr r ++ if rr > 0 then [rr] else []
429 cs = replicate qc c ++ if rc > 0 then [rc] else []
430
431-------------------------------------------------------------------
432
433-- Given a column number and a function taking matrix indexes, returns
434-- a function which takes vector indexes (that can be used on the
435-- flattened matrix).
436mk :: Int -> ((Int, Int) -> t) -> (Int -> t)
437mk c g = \k -> g (divMod k c)
438
439{- |
440
441>>> mapMatrixWithIndexM_ (\(i,j) v -> printf "m[%d,%d] = %.f\n" i j v :: IO()) ((2><3)[1 :: Double ..])
442m[0,0] = 1
443m[0,1] = 2
444m[0,2] = 3
445m[1,0] = 4
446m[1,1] = 5
447m[1,2] = 6
448
449-}
450mapMatrixWithIndexM_
451 :: (Element a, Num a, Monad m) =>
452 ((Int, Int) -> a -> m ()) -> Matrix a -> m ()
453mapMatrixWithIndexM_ g m = mapVectorWithIndexM_ (mk c g) . flatten $ m
454 where
455 c = cols m
456
457{- |
458
459>>> mapMatrixWithIndexM (\(i,j) v -> Just $ 100*v + 10*fromIntegral i + fromIntegral j) (ident 3:: Matrix Double)
460Just (3><3)
461 [ 100.0, 1.0, 2.0
462 , 10.0, 111.0, 12.0
463 , 20.0, 21.0, 122.0 ]
464
465-}
466mapMatrixWithIndexM
467 :: (Element a, Storable b, Monad m) =>
468 ((Int, Int) -> a -> m b) -> Matrix a -> m (Matrix b)
469mapMatrixWithIndexM g m = liftM (reshape c) . mapVectorWithIndexM (mk c g) . flatten $ m
470 where
471 c = cols m
472
473{- |
474
475>>> mapMatrixWithIndex (\\(i,j) v -> 100*v + 10*fromIntegral i + fromIntegral j) (ident 3:: Matrix Double)
476(3><3)
477 [ 100.0, 1.0, 2.0
478 , 10.0, 111.0, 12.0
479 , 20.0, 21.0, 122.0 ]
480
481 -}
482mapMatrixWithIndex
483 :: (Element a, Storable b) =>
484 ((Int, Int) -> a -> b) -> Matrix a -> Matrix b
485mapMatrixWithIndex g m = reshape c . mapVectorWithIndex (mk c g) . flatten $ m
486 where
487 c = cols m
488
489mapMatrix :: (Storable a, Storable b) => (a -> b) -> Matrix a -> Matrix b
490mapMatrix f = liftMatrix (mapVector f)