summaryrefslogtreecommitdiff
path: root/packages/base/src/Numeric/HMatrix.hs
diff options
context:
space:
mode:
authorAlberto Ruiz <aruiz@um.es>2014-06-07 11:44:13 +0200
committerAlberto Ruiz <aruiz@um.es>2014-06-07 11:44:13 +0200
commit907d69558f8819a44b552e820750f99340f1f107 (patch)
treef825b16bf85ae4496b0eaca94ed239f2845c466d /packages/base/src/Numeric/HMatrix.hs
parent2e07762524d0d08fbc2e565529d480dc7fa479b5 (diff)
documentation
Diffstat (limited to 'packages/base/src/Numeric/HMatrix.hs')
-rw-r--r--packages/base/src/Numeric/HMatrix.hs83
1 files changed, 58 insertions, 25 deletions
diff --git a/packages/base/src/Numeric/HMatrix.hs b/packages/base/src/Numeric/HMatrix.hs
index 9d34658..ec96bfc 100644
--- a/packages/base/src/Numeric/HMatrix.hs
+++ b/packages/base/src/Numeric/HMatrix.hs
@@ -17,10 +17,10 @@ module Numeric.HMatrix (
17 -- | 17 -- |
18 -- The standard numeric classes are defined elementwise: 18 -- The standard numeric classes are defined elementwise:
19 -- 19 --
20 -- >>> fromList [1,2,3] * fromList [3,0,-2 :: Double] 20 -- >>> vect [1,2,3] * vect [3,0,-2]
21 -- fromList [3.0,0.0,-6.0] 21 -- fromList [3.0,0.0,-6.0]
22 -- 22 --
23 -- >>> (3><3) [1..9] * ident 3 :: Matrix Double 23 -- >>> mat 3 [1..9] * ident 3
24 -- (3><3) 24 -- (3><3)
25 -- [ 1.0, 0.0, 0.0 25 -- [ 1.0, 0.0, 0.0
26 -- , 0.0, 5.0, 0.0 26 -- , 0.0, 5.0, 0.0
@@ -36,6 +36,12 @@ module Numeric.HMatrix (
36 -- , 5.0, 7.0, 5.0 36 -- , 5.0, 7.0, 5.0
37 -- , 5.0, 5.0, 7.0 ] 37 -- , 5.0, 5.0, 7.0 ]
38 -- 38 --
39 -- >>> mat 3 [1..9] + mat 1 [10,20,30]
40 -- (3><3)
41 -- [ 11.0, 12.0, 13.0
42 -- , 24.0, 25.0, 26.0
43 -- , 37.0, 38.0, 39.0 ]
44 --
39 45
40 -- * Products 46 -- * Products
41 -- ** dot 47 -- ** dot
@@ -48,11 +54,12 @@ module Numeric.HMatrix (
48 -- single-element matrices (created from numeric literals or using 'scalar') 54 -- single-element matrices (created from numeric literals or using 'scalar')
49 -- are used for scaling. 55 -- are used for scaling.
50 -- 56 --
51 -- >>> let m = (2><3)[1..] :: Matrix Double 57 -- >>> import Data.Monoid as M
52 -- >>> m <> 2 <> diagl[0.5,1,0] 58 -- >>> let m = mat 3 [1..6]
59 -- >>> m M.<> 2 M.<> diagl[0.5,1,0]
53 -- (2><3) 60 -- (2><3)
54 -- [ 1.0, 4.0, 0.0 61 -- [ 1.0, 4.0, 0.0
55 -- , 4.0, 10.0, 0.0 ] 62 -- , 4.0, 10.0, 0.0 ]
56 -- 63 --
57 -- 'mconcat' uses 'optimiseMult' to get the optimal association order. 64 -- 'mconcat' uses 'optimiseMult' to get the optimal association order.
58 65
@@ -76,10 +83,18 @@ module Numeric.HMatrix (
76 inv, pinv, pinvTol, 83 inv, pinv, pinvTol,
77 84
78 -- * Determinant and rank 85 -- * Determinant and rank
79 rcond, rank, ranksv, 86 rcond, rank,
80 det, invlndet, 87 det, invlndet,
81 88
82 -- * Singular value decomposition 89 -- * Norms
90 Normed(..),
91 norm_Frob, norm_nuclear,
92
93 -- * Nullspace and range
94 orth,
95 nullspace, null1, null1sym,
96
97 -- * SVD
83 svd, 98 svd,
84 fullSVD, 99 fullSVD,
85 thinSVD, 100 thinSVD,
@@ -112,18 +127,6 @@ module Numeric.HMatrix (
112 sqrtm, 127 sqrtm,
113 matFunc, 128 matFunc,
114 129
115 -- * Nullspace
116 nullspacePrec,
117 nullVector,
118 nullspaceSVD,
119 null1, null1sym,
120
121 orth,
122
123 -- * Norms
124 Normed(..),
125 norm_Frob, norm_nuclear,
126
127 -- * Correlation and convolution 130 -- * Correlation and convolution
128 corr, conv, corrMin, corr2, conv2, 131 corr, conv, corrMin, corr2, conv2,
129 132
@@ -132,7 +135,8 @@ module Numeric.HMatrix (
132 Seed, RandDist(..), randomVector, rand, randn, gaussianSample, uniformSample, 135 Seed, RandDist(..), randomVector, rand, randn, gaussianSample, uniformSample,
133 136
134 -- * Misc 137 -- * Misc
135 meanCov, peps, relativeError, haussholder, optimiseMult, udot, 138 meanCov, peps, relativeError, haussholder, optimiseMult, udot, nullspaceSVD, orthSVD, ranksv,
139 ℝ,ℂ,iC,
136 -- * Auxiliary classes 140 -- * Auxiliary classes
137 Element, Container, Product, Numeric, LSDiv, 141 Element, Container, Product, Numeric, LSDiv,
138 Complexable, RealElement, 142 Complexable, RealElement,
@@ -142,8 +146,7 @@ module Numeric.HMatrix (
142-- Normed, 146-- Normed,
143 Transposable, 147 Transposable,
144 CGState(..), 148 CGState(..),
145 Testable(..), 149 Testable(..)
146 ℕ,ℤ,ℝ,ℂ, i_C
147) where 150) where
148 151
149import Numeric.LinearAlgebra.Data 152import Numeric.LinearAlgebra.Data
@@ -151,14 +154,38 @@ import Numeric.LinearAlgebra.Data
151import Numeric.Matrix() 154import Numeric.Matrix()
152import Numeric.Vector() 155import Numeric.Vector()
153import Data.Packed.Numeric hiding ((<>)) 156import Data.Packed.Numeric hiding ((<>))
154import Numeric.LinearAlgebra.Algorithms hiding (linearSolve,Normed) 157import Numeric.LinearAlgebra.Algorithms hiding (linearSolve,Normed,orth)
155import qualified Numeric.LinearAlgebra.Algorithms as A 158import qualified Numeric.LinearAlgebra.Algorithms as A
156import Numeric.LinearAlgebra.Util 159import Numeric.LinearAlgebra.Util
157import Numeric.LinearAlgebra.Random 160import Numeric.LinearAlgebra.Random
158import Numeric.Sparse((!#>)) 161import Numeric.Sparse((!#>))
159import Numeric.LinearAlgebra.Util.CG 162import Numeric.LinearAlgebra.Util.CG
160 163
161-- | matrix product 164{- | dense matrix product
165
166>>> let a = (3><5) [1..]
167>>> a
168(3><5)
169 [ 1.0, 2.0, 3.0, 4.0, 5.0
170 , 6.0, 7.0, 8.0, 9.0, 10.0
171 , 11.0, 12.0, 13.0, 14.0, 15.0 ]
172
173>>> let b = (5><2) [1,3, 0,2, -1,5, 7,7, 6,0]
174>>> b
175(5><2)
176 [ 1.0, 3.0
177 , 0.0, 2.0
178 , -1.0, 5.0
179 , 7.0, 7.0
180 , 6.0, 0.0 ]
181
182>>> a <> b
183(3><2)
184 [ 56.0, 50.0
185 , 121.0, 135.0
186 , 186.0, 220.0 ]
187
188-}
162(<>) :: Numeric t => Matrix t -> Matrix t -> Matrix t 189(<>) :: Numeric t => Matrix t -> Matrix t -> Matrix t
163(<>) = mXm 190(<>) = mXm
164infixr 8 <> 191infixr 8 <>
@@ -166,3 +193,9 @@ infixr 8 <>
166-- | Solve a linear system (for square coefficient matrix and several right-hand sides) using the LU decomposition, returning Nothing for a singular system. For underconstrained or overconstrained systems use 'linearSolveLS' or 'linearSolveSVD'. 193-- | Solve a linear system (for square coefficient matrix and several right-hand sides) using the LU decomposition, returning Nothing for a singular system. For underconstrained or overconstrained systems use 'linearSolveLS' or 'linearSolveSVD'.
167linearSolve m b = A.mbLinearSolve m b 194linearSolve m b = A.mbLinearSolve m b
168 195
196-- | return an orthonormal basis of the null space of a matrix. See also 'nullspaceSVD'.
197nullspace m = nullspaceSVD (Left (1*eps)) m (rightSV m)
198
199-- | return an orthonormal basis of the range space of a matrix. See also 'orthSVD'.
200orth m = orthSVD (Left (1*eps)) m (leftSV m)
201