summaryrefslogtreecommitdiff
path: root/packages/gsl/src
diff options
context:
space:
mode:
authorAlberto Ruiz <aruiz@um.es>2015-04-27 10:52:59 +0200
committerAlberto Ruiz <aruiz@um.es>2015-04-27 10:52:59 +0200
commit5e845013180e8f86dd8153030d5f5ea13826497d (patch)
tree52df8c1e8dda157896d4884bbd0dbfb439132d21 /packages/gsl/src
parente282d2b4c5f389941225d02df94e7baf38c4f38e (diff)
parenta25d6f45d7131bd86508f82870d2e24606a811e8 (diff)
Merge pull request #122 from peddie/master
Add a new module containing the GSL interpolation interface
Diffstat (limited to 'packages/gsl/src')
-rw-r--r--packages/gsl/src/Numeric/GSL.hs2
-rw-r--r--packages/gsl/src/Numeric/GSL/Interpolation.hs282
-rw-r--r--packages/gsl/src/Numeric/GSL/gsl-aux.c112
3 files changed, 396 insertions, 0 deletions
diff --git a/packages/gsl/src/Numeric/GSL.hs b/packages/gsl/src/Numeric/GSL.hs
index 61b8d7b..3f546bf 100644
--- a/packages/gsl/src/Numeric/GSL.hs
+++ b/packages/gsl/src/Numeric/GSL.hs
@@ -22,6 +22,7 @@ module Numeric.GSL (
22, module Numeric.GSL.Root 22, module Numeric.GSL.Root
23, module Numeric.GSL.ODE 23, module Numeric.GSL.ODE
24, module Numeric.GSL.Fitting 24, module Numeric.GSL.Fitting
25, module Numeric.GSL.Interpolation
25, module Data.Complex 26, module Data.Complex
26, setErrorHandlerOff 27, setErrorHandlerOff
27) where 28) where
@@ -34,6 +35,7 @@ import Numeric.GSL.Minimization
34import Numeric.GSL.Root 35import Numeric.GSL.Root
35import Numeric.GSL.ODE 36import Numeric.GSL.ODE
36import Numeric.GSL.Fitting 37import Numeric.GSL.Fitting
38import Numeric.GSL.Interpolation
37import Data.Complex 39import Data.Complex
38 40
39 41
diff --git a/packages/gsl/src/Numeric/GSL/Interpolation.hs b/packages/gsl/src/Numeric/GSL/Interpolation.hs
new file mode 100644
index 0000000..4d72ee2
--- /dev/null
+++ b/packages/gsl/src/Numeric/GSL/Interpolation.hs
@@ -0,0 +1,282 @@
1{- |
2Module : Numeric.GSL.Interpolation
3Copyright : (c) Matthew Peddie 2015
4License : GPL
5Maintainer : Alberto Ruiz
6Stability : provisional
7
8Interpolation routines.
9
10<https://www.gnu.org/software/gsl/manual/html_node/Interpolation.html#Interpolation>
11
12The GSL routines @gsl_spline_eval@ and friends are used, but in spite
13of the names, they are not restricted to spline interpolation. The
14functions in this module will work for any 'InterpolationMethod'.
15
16-}
17
18
19module Numeric.GSL.Interpolation (
20 -- * Interpolation methods
21 InterpolationMethod(..)
22 -- * Evaluation of interpolated functions
23 , evaluate
24 , evaluateV
25 -- * Evaluation of derivatives of interpolated functions
26 , evaluateDerivative
27 , evaluateDerivative2
28 , evaluateDerivativeV
29 , evaluateDerivative2V
30 -- * Evaluation of integrals of interpolated functions
31 , evaluateIntegral
32 , evaluateIntegralV
33) where
34
35import Data.Packed.Vector(Vector, fromList, dim)
36import Data.Packed.Foreign(appVector)
37import Foreign.C.Types
38import Foreign.Marshal.Alloc(alloca)
39import Foreign.Ptr(Ptr)
40import Foreign.Storable(peek)
41import Numeric.GSL.Internal
42import System.IO.Unsafe(unsafePerformIO)
43
44data InterpolationMethod = Linear
45 | Polynomial
46 | CSpline
47 | CSplinePeriodic
48 | Akima
49 | AkimaPeriodic
50 deriving (Eq, Show, Read)
51
52methodToInt :: Integral a => InterpolationMethod -> a
53methodToInt Linear = 0
54methodToInt Polynomial = 1
55methodToInt CSpline = 2
56methodToInt CSplinePeriodic = 3
57methodToInt Akima = 4
58methodToInt AkimaPeriodic = 5
59
60applyCFun hsname cname fun mth xs ys x
61 | dim xs /= dim ys = error $
62 "Error: Vectors of unequal sizes " ++
63 show (dim xs) ++ " and " ++ show (dim ys) ++
64 " supplied to " ++ hsname
65 | otherwise = unsafePerformIO $
66 flip appVector xs $ \xs' ->
67 flip appVector ys $ \ys' ->
68 alloca $ \y' -> do
69 fun xs' ys'
70 (fromIntegral $ dim xs) x
71 (methodToInt mth) y' // check cname
72 peek y'
73
74foreign import ccall safe "spline_eval" c_spline_eval
75 :: Ptr Double -> Ptr Double -> CUInt -> Double -> CInt -> Ptr Double -> IO CInt
76
77--------------------------------------------------------------------
78{- | Evaluate a function by interpolating within the given dataset. For
79example:
80
81>>> let xs = vector [1..10]
82>>> let ys = vector $ map (**2) [1..10]
83>>> evaluateV CSpline xs ys 2.2
844.818867924528303
85
86To successfully @evaluateV xs ys x@, the vectors of corresponding
87domain-range values @xs@ and @ys@ must have identical lengths, and
88@xs@ must be monotonically increasing. The evaluation point @x@ must
89lie between the smallest and largest values in @xs@.
90
91-}
92evaluateV :: InterpolationMethod -- ^ What method to use to interpolate
93 -> Vector Double -- ^ Data points sampling the domain of the function
94 -> Vector Double -- ^ Data points sampling the range of the function
95 -> Double -- ^ Point at which to evaluate the function
96 -> Double -- ^ Interpolated result
97evaluateV = applyCFun "evaluateV" "spline_eval" c_spline_eval
98
99{- | Evaluate a function by interpolating within the given dataset. For
100example:
101
102>>> let xs = [1..10]
103>>> let ys map (**2) [1..10]
104>>> evaluate Akima (zip xs ys) 2.2
1054.840000000000001
106
107To successfully @evaluate points x@, the domain (@x@) values in
108@points@ must be monotonically increasing. The evaluation point @x@
109must lie between the smallest and largest values in the sampled
110domain.
111
112-}
113evaluate :: InterpolationMethod -- ^ What method to use to interpolate
114 -> [(Double, Double)] -- ^ (domain, range) values sampling the function
115 -> Double -- ^ Point at which to evaluate the function
116 -> Double -- ^ Interpolated result
117evaluate mth pts =
118 applyCFun "evaluate" "spline_eval" c_spline_eval_deriv
119 mth (fromList xs) (fromList ys)
120 where
121 (xs, ys) = unzip pts
122
123foreign import ccall safe "spline_eval_deriv" c_spline_eval_deriv
124 :: Ptr Double -> Ptr Double -> CUInt -> Double -> CInt -> Ptr Double -> IO CInt
125
126{- | Evaluate the derivative of a function by interpolating within the
127given dataset. For example:
128
129>>> let xs = vector [1..10]
130>>> let ys = vector $ map (**2) [1..10]
131>>> evaluateDerivativeV CSpline xs ys 2.2
1324.338867924528302
133
134To successfully @evaluateDerivativeV xs ys x@, the vectors of
135corresponding domain-range values @xs@ and @ys@ must have identical
136lengths, and @xs@ must be monotonically increasing. The interpolation
137point @x@ must lie between the smallest and largest values in @xs@.
138
139-}
140evaluateDerivativeV :: InterpolationMethod -- ^ What method to use to interpolate
141 -> Vector Double -- ^ Data points @xs@ sampling the domain of the function
142 -> Vector Double -- ^ Data points @ys@ sampling the range of the function
143 -> Double -- ^ Point @x@ at which to evaluate the derivative
144 -> Double -- ^ Interpolated result
145evaluateDerivativeV =
146 applyCFun "evaluateDerivativeV" "spline_eval_deriv" c_spline_eval_deriv
147
148{- | Evaluate the derivative of a function by interpolating within the
149given dataset. For example:
150
151>>> let xs = [1..10]
152>>> let ys map (**2) [1..10]
153>>> evaluateDerivative Akima (zip xs ys) 2.2
1544.4
155
156To successfully @evaluateDerivative points x@, the domain (@x@) values
157in @points@ must be monotonically increasing. The evaluation point
158@x@ must lie between the smallest and largest values in the sampled
159domain.
160
161-}
162evaluateDerivative :: InterpolationMethod -- ^ What method to use to interpolate
163 -> [(Double, Double)] -- ^ (domain, range) points sampling the function
164 -> Double -- ^ Point @x@ at which to evaluate the derivative
165 -> Double -- ^ Interpolated result
166evaluateDerivative mth pts =
167 applyCFun "evaluateDerivative" "spline_eval_deriv" c_spline_eval_deriv
168 mth (fromList xs) (fromList ys)
169 where
170 (xs, ys) = unzip pts
171
172foreign import ccall safe "spline_eval_deriv2" c_spline_eval_deriv2
173 :: Ptr Double -> Ptr Double -> CUInt -> Double -> CInt -> Ptr Double -> IO CInt
174
175{- | Evaluate the second derivative of a function by interpolating within the
176given dataset. For example:
177
178>>> let xs = vector [1..10]
179>>> let ys = vector $ map (**2) [1..10]
180>>> evaluateDerivative2V CSpline xs ys 2.2
1812.4
182
183To successfully @evaluateDerivative2V xs ys x@, the vectors @xs@ and
184@ys@ must have identical lengths, and @xs@ must be monotonically
185increasing. The evaluation point @x@ must lie between the smallest
186and largest values in @xs@.
187
188-}
189evaluateDerivative2V :: InterpolationMethod -- ^ What method to use to interpolate
190 -> Vector Double -- ^ Data points @xs@ sampling the domain of the function
191 -> Vector Double -- ^ Data points @ys@ sampling the range of the function
192 -> Double -- ^ Point @x@ at which to evaluate the second derivative
193 -> Double -- ^ Interpolated result
194evaluateDerivative2V =
195 applyCFun "evaluateDerivative2V" "spline_eval_deriv2" c_spline_eval_deriv2
196
197{- | Evaluate the second derivative of a function by interpolating
198within the given dataset. For example:
199
200>>> let xs = [1..10]
201>>> let ys map (**2) [1..10]
202>>> evaluateDerivative2 Akima (zip xs ys) 2.2
2032.0
204
205To successfully @evaluateDerivative2 points x@, the domain (@x@)
206values in @points@ must be monotonically increasing. The evaluation
207point @x@ must lie between the smallest and largest values in the
208sampled domain.
209
210-}
211evaluateDerivative2 :: InterpolationMethod -- ^ What method to use to interpolate
212 -> [(Double, Double)] -- ^ (domain, range) points sampling the function
213 -> Double -- ^ Point @x@ at which to evaluate the second derivative
214 -> Double -- ^ Interpolated result
215evaluateDerivative2 mth pts =
216 applyCFun "evaluateDerivative2" "spline_eval_deriv2" c_spline_eval_deriv2
217 mth (fromList xs) (fromList ys)
218 where
219 (xs, ys) = unzip pts
220
221foreign import ccall safe "spline_eval_integ" c_spline_eval_integ
222 :: Ptr Double -> Ptr Double -> CUInt -> Double -> Double -> CInt -> Ptr Double -> IO CInt
223
224applyCIntFun hsname cname fun mth xs ys a b
225 | dim xs /= dim ys = error $
226 "Error: Vectors of unequal sizes " ++
227 show (dim xs) ++ " and " ++ show (dim ys) ++
228 " supplied to " ++ hsname
229 | otherwise = unsafePerformIO $
230 flip appVector xs $ \xs' ->
231 flip appVector ys $ \ys' ->
232 alloca $ \y' -> do
233 fun xs' ys'
234 (fromIntegral $ dim xs) a b
235 (methodToInt mth) y' // check cname
236 peek y'
237
238{- | Evaluate the definite integral of a function by interpolating
239within the given dataset. For example:
240
241>>> let xs = vector [1..10]
242>>> let ys = vector $ map (**2) [1..10]
243>>> evaluateIntegralV CSpline xs ys 2.2 5.5
24451.89853207547169
245
246To successfully @evaluateIntegralV xs ys a b@, the vectors @xs@ and
247@ys@ must have identical lengths, and @xs@ must be monotonically
248increasing. The integration bounds @a@ and @b@ must lie between the
249smallest and largest values in @xs@.
250
251-}
252evaluateIntegralV :: InterpolationMethod -- ^ What method to use to interpolate
253 -> Vector Double -- ^ Data points @xs@ sampling the domain of the function
254 -> Vector Double -- ^ Data points @ys@ sampling the range of the function
255 -> Double -- ^ Lower integration bound @a@
256 -> Double -- ^ Upper integration bound @b@
257 -> Double -- ^ Resulting area
258evaluateIntegralV =
259 applyCIntFun "evaluateIntegralV" "spline_eval_integ" c_spline_eval_integ
260
261{- | Evaluate the definite integral of a function by interpolating
262within the given dataset. For example:
263
264>>> let xs = [1..10]
265>>> let ys = map (**2) [1..10]
266>>> evaluateIntegralV CSpline (zip xs ys) (2.2, 5.5)
26751.909
268
269To successfully @evaluateIntegral points (a, b)@, the domain (@x@)
270values of @points@ must be monotonically increasing. The integration
271bounds @a@ and @b@ must lie between the smallest and largest values in
272the sampled domain..
273-}
274evaluateIntegral :: InterpolationMethod -- ^ What method to use to interpolate
275 -> [(Double, Double)] -- ^ (domain, range) points sampling the function
276 -> (Double, Double) -- ^ Integration bounds (@a@, @b@)
277 -> Double -- ^ Resulting area
278evaluateIntegral mth pts (a, b) =
279 applyCIntFun "evaluateIntegral" "spline_eval_integ" c_spline_eval_integ
280 mth (fromList xs) (fromList ys) a b
281 where
282 (xs, ys) = unzip pts
diff --git a/packages/gsl/src/Numeric/GSL/gsl-aux.c b/packages/gsl/src/Numeric/GSL/gsl-aux.c
index ffc5c20..e1b189c 100644
--- a/packages/gsl/src/Numeric/GSL/gsl-aux.c
+++ b/packages/gsl/src/Numeric/GSL/gsl-aux.c
@@ -34,6 +34,7 @@
34#include <gsl/gsl_rng.h> 34#include <gsl/gsl_rng.h>
35#include <gsl/gsl_randist.h> 35#include <gsl/gsl_randist.h>
36#include <gsl/gsl_roots.h> 36#include <gsl/gsl_roots.h>
37#include <gsl/gsl_spline.h>
37#include <gsl/gsl_multifit_nlin.h> 38#include <gsl/gsl_multifit_nlin.h>
38#include <string.h> 39#include <string.h>
39#include <stdio.h> 40#include <stdio.h>
@@ -140,6 +141,117 @@ int deriv(int code, double f(double, void*), double x, double h, double * result
140 return 0; 141 return 0;
141} 142}
142 143
144int spline_eval(const double xa[], const double ya[], unsigned int size,
145 double x, int method, double *y) {
146 DEBUGMSG("spline_eval");
147 const gsl_interp_type *T;
148 switch (method) {
149 case 0: { T = gsl_interp_linear; break; }
150 case 1: { T = gsl_interp_polynomial; break; }
151 case 2: { T = gsl_interp_cspline; break; }
152 case 3: { T = gsl_interp_cspline_periodic; break; }
153 case 4: { T = gsl_interp_akima; break; }
154 case 5: { T = gsl_interp_akima_periodic; break; }
155 default: ERROR(BAD_CODE);
156 }
157
158 gsl_spline *spline = gsl_spline_alloc(T, size);
159 if (NULL == spline) ERROR(MEM);
160 const int initres = gsl_spline_init(spline, xa, ya, size);
161 CHECK(initres,initres);
162 gsl_interp_accel *acc = gsl_interp_accel_alloc();
163 if (NULL == acc) { gsl_spline_free(spline); ERROR(MEM); };
164
165 const int res = gsl_spline_eval_e(spline, x, acc, y);
166 CHECK(res,res);
167 gsl_interp_accel_free(acc);
168 gsl_spline_free(spline);
169 OK
170}
171
172int spline_eval_deriv(const double xa[], const double ya[], unsigned int size,
173 double x, int method, double *y) {
174 DEBUGMSG("spline_eval_deriv");
175 const gsl_interp_type *T;
176 switch (method) {
177 case 0: { T = gsl_interp_linear; break; }
178 case 1: { T = gsl_interp_polynomial; break; }
179 case 2: { T = gsl_interp_cspline; break; }
180 case 3: { T = gsl_interp_cspline_periodic; break; }
181 case 4: { T = gsl_interp_akima; break; }
182 case 5: { T = gsl_interp_akima_periodic; break; }
183 default: ERROR(BAD_CODE);
184 }
185
186 gsl_spline *spline = gsl_spline_alloc(T, size);
187 if (NULL == spline) ERROR(MEM);
188 const int initres = gsl_spline_init(spline, xa, ya, size);
189 CHECK(initres,initres);
190 gsl_interp_accel *acc = gsl_interp_accel_alloc();
191 if (NULL == acc) { gsl_spline_free(spline); ERROR(MEM); };
192
193 const int res = gsl_spline_eval_deriv_e(spline, x, acc, y);
194 CHECK(res,res);
195 gsl_interp_accel_free(acc);
196 gsl_spline_free(spline);
197 OK
198}
199
200int spline_eval_deriv2(const double xa[], const double ya[], unsigned int size,
201 double x, int method, double *y) {
202 DEBUGMSG("spline_eval_deriv2");
203 const gsl_interp_type *T;
204 switch (method) {
205 case 0: { T = gsl_interp_linear; break; }
206 case 1: { T = gsl_interp_polynomial; break; }
207 case 2: { T = gsl_interp_cspline; break; }
208 case 3: { T = gsl_interp_cspline_periodic; break; }
209 case 4: { T = gsl_interp_akima; break; }
210 case 5: { T = gsl_interp_akima_periodic; break; }
211 default: ERROR(BAD_CODE);
212 }
213
214 gsl_spline *spline = gsl_spline_alloc(T, size);
215 if (NULL == spline) ERROR(MEM);
216 const int initres = gsl_spline_init(spline, xa, ya, size);
217 CHECK(initres,initres);
218 gsl_interp_accel *acc = gsl_interp_accel_alloc();
219 if (NULL == acc) { gsl_spline_free(spline); ERROR(MEM); };
220
221 const int res = gsl_spline_eval_deriv2_e(spline, x, acc, y);
222 CHECK(res,res);
223 gsl_interp_accel_free(acc);
224 gsl_spline_free(spline);
225 OK
226}
227
228int spline_eval_integ(const double xa[], const double ya[], unsigned int size,
229 double a, double b, int method, double *y) {
230 DEBUGMSG("spline_eval_integ");
231 const gsl_interp_type *T;
232 switch (method) {
233 case 0: { T = gsl_interp_linear; break; }
234 case 1: { T = gsl_interp_polynomial; break; }
235 case 2: { T = gsl_interp_cspline; break; }
236 case 3: { T = gsl_interp_cspline_periodic; break; }
237 case 4: { T = gsl_interp_akima; break; }
238 case 5: { T = gsl_interp_akima_periodic; break; }
239 default: ERROR(BAD_CODE);
240 }
241
242 gsl_spline *spline = gsl_spline_alloc(T, size);
243 if (NULL == spline) ERROR(MEM);
244 const int initres = gsl_spline_init(spline, xa, ya, size);
245 CHECK(initres,initres);
246 gsl_interp_accel *acc = gsl_interp_accel_alloc();
247 if (NULL == acc) { gsl_spline_free(spline); ERROR(MEM); };
248
249 const int res = gsl_spline_eval_integ_e(spline, a, b, acc, y);
250 CHECK(res,res);
251 gsl_interp_accel_free(acc);
252 gsl_spline_free(spline);
253 OK
254}
143 255
144int integrate_qng(double f(double, void*), double a, double b, double aprec, double prec, 256int integrate_qng(double f(double, void*), double a, double b, double aprec, double prec,
145 double *result, double*error) { 257 double *result, double*error) {