diff options
Diffstat (limited to 'packages/base/src/Internal/Static.hs')
-rw-r--r-- | packages/base/src/Internal/Static.hs | 527 |
1 files changed, 527 insertions, 0 deletions
diff --git a/packages/base/src/Internal/Static.hs b/packages/base/src/Internal/Static.hs new file mode 100644 index 0000000..0068313 --- /dev/null +++ b/packages/base/src/Internal/Static.hs | |||
@@ -0,0 +1,527 @@ | |||
1 | #if __GLASGOW_HASKELL__ >= 708 | ||
2 | |||
3 | {-# LANGUAGE DataKinds #-} | ||
4 | {-# LANGUAGE KindSignatures #-} | ||
5 | {-# LANGUAGE GeneralizedNewtypeDeriving #-} | ||
6 | {-# LANGUAGE MultiParamTypeClasses #-} | ||
7 | {-# LANGUAGE FunctionalDependencies #-} | ||
8 | {-# LANGUAGE FlexibleContexts #-} | ||
9 | {-# LANGUAGE ScopedTypeVariables #-} | ||
10 | {-# LANGUAGE Rank2Types #-} | ||
11 | {-# LANGUAGE FlexibleInstances #-} | ||
12 | {-# LANGUAGE TypeOperators #-} | ||
13 | {-# LANGUAGE ViewPatterns #-} | ||
14 | |||
15 | {- | | ||
16 | Module : Internal.Static | ||
17 | Copyright : (c) Alberto Ruiz 2006-14 | ||
18 | License : BSD3 | ||
19 | Stability : provisional | ||
20 | |||
21 | -} | ||
22 | |||
23 | module Internal.Static where | ||
24 | |||
25 | |||
26 | import GHC.TypeLits | ||
27 | import qualified Numeric.LinearAlgebra as LA | ||
28 | import Numeric.LinearAlgebra hiding (konst,size,R,C) | ||
29 | import Internal.Vector as D hiding (R,C) | ||
30 | import Internal.ST | ||
31 | import Data.Proxy(Proxy) | ||
32 | import Foreign.Storable(Storable) | ||
33 | import Text.Printf | ||
34 | |||
35 | -------------------------------------------------------------------------------- | ||
36 | |||
37 | type ℝ = Double | ||
38 | type ℂ = Complex Double | ||
39 | |||
40 | newtype Dim (n :: Nat) t = Dim t | ||
41 | deriving Show | ||
42 | |||
43 | lift1F | ||
44 | :: (c t -> c t) | ||
45 | -> Dim n (c t) -> Dim n (c t) | ||
46 | lift1F f (Dim v) = Dim (f v) | ||
47 | |||
48 | lift2F | ||
49 | :: (c t -> c t -> c t) | ||
50 | -> Dim n (c t) -> Dim n (c t) -> Dim n (c t) | ||
51 | lift2F f (Dim u) (Dim v) = Dim (f u v) | ||
52 | |||
53 | -------------------------------------------------------------------------------- | ||
54 | |||
55 | newtype R n = R (Dim n (Vector ℝ)) | ||
56 | deriving (Num,Fractional,Floating) | ||
57 | |||
58 | newtype C n = C (Dim n (Vector ℂ)) | ||
59 | deriving (Num,Fractional,Floating) | ||
60 | |||
61 | newtype L m n = L (Dim m (Dim n (Matrix ℝ))) | ||
62 | |||
63 | newtype M m n = M (Dim m (Dim n (Matrix ℂ))) | ||
64 | |||
65 | |||
66 | mkR :: Vector ℝ -> R n | ||
67 | mkR = R . Dim | ||
68 | |||
69 | mkC :: Vector ℂ -> C n | ||
70 | mkC = C . Dim | ||
71 | |||
72 | mkL :: Matrix ℝ -> L m n | ||
73 | mkL x = L (Dim (Dim x)) | ||
74 | |||
75 | mkM :: Matrix ℂ -> M m n | ||
76 | mkM x = M (Dim (Dim x)) | ||
77 | |||
78 | -------------------------------------------------------------------------------- | ||
79 | |||
80 | type V n t = Dim n (Vector t) | ||
81 | |||
82 | ud :: Dim n (Vector t) -> Vector t | ||
83 | ud (Dim v) = v | ||
84 | |||
85 | mkV :: forall (n :: Nat) t . t -> Dim n t | ||
86 | mkV = Dim | ||
87 | |||
88 | |||
89 | vconcat :: forall n m t . (KnownNat n, KnownNat m, Numeric t) | ||
90 | => V n t -> V m t -> V (n+m) t | ||
91 | (ud -> u) `vconcat` (ud -> v) = mkV (vjoin [u', v']) | ||
92 | where | ||
93 | du = fromIntegral . natVal $ (undefined :: Proxy n) | ||
94 | dv = fromIntegral . natVal $ (undefined :: Proxy m) | ||
95 | u' | du > 1 && LA.size u == 1 = LA.konst (u D.@> 0) du | ||
96 | | otherwise = u | ||
97 | v' | dv > 1 && LA.size v == 1 = LA.konst (v D.@> 0) dv | ||
98 | | otherwise = v | ||
99 | |||
100 | |||
101 | gvec2 :: Storable t => t -> t -> V 2 t | ||
102 | gvec2 a b = mkV $ runSTVector $ do | ||
103 | v <- newUndefinedVector 2 | ||
104 | writeVector v 0 a | ||
105 | writeVector v 1 b | ||
106 | return v | ||
107 | |||
108 | gvec3 :: Storable t => t -> t -> t -> V 3 t | ||
109 | gvec3 a b c = mkV $ runSTVector $ do | ||
110 | v <- newUndefinedVector 3 | ||
111 | writeVector v 0 a | ||
112 | writeVector v 1 b | ||
113 | writeVector v 2 c | ||
114 | return v | ||
115 | |||
116 | |||
117 | gvec4 :: Storable t => t -> t -> t -> t -> V 4 t | ||
118 | gvec4 a b c d = mkV $ runSTVector $ do | ||
119 | v <- newUndefinedVector 4 | ||
120 | writeVector v 0 a | ||
121 | writeVector v 1 b | ||
122 | writeVector v 2 c | ||
123 | writeVector v 3 d | ||
124 | return v | ||
125 | |||
126 | |||
127 | gvect :: forall n t . (Show t, KnownNat n, Numeric t) => String -> [t] -> V n t | ||
128 | gvect st xs' | ||
129 | | ok = mkV v | ||
130 | | not (null rest) && null (tail rest) = abort (show xs') | ||
131 | | not (null rest) = abort (init (show (xs++take 1 rest))++", ... ]") | ||
132 | | otherwise = abort (show xs) | ||
133 | where | ||
134 | (xs,rest) = splitAt d xs' | ||
135 | ok = LA.size v == d && null rest | ||
136 | v = LA.fromList xs | ||
137 | d = fromIntegral . natVal $ (undefined :: Proxy n) | ||
138 | abort info = error $ st++" "++show d++" can't be created from elements "++info | ||
139 | |||
140 | |||
141 | -------------------------------------------------------------------------------- | ||
142 | |||
143 | type GM m n t = Dim m (Dim n (Matrix t)) | ||
144 | |||
145 | |||
146 | gmat :: forall m n t . (Show t, KnownNat m, KnownNat n, Numeric t) => String -> [t] -> GM m n t | ||
147 | gmat st xs' | ||
148 | | ok = Dim (Dim x) | ||
149 | | not (null rest) && null (tail rest) = abort (show xs') | ||
150 | | not (null rest) = abort (init (show (xs++take 1 rest))++", ... ]") | ||
151 | | otherwise = abort (show xs) | ||
152 | where | ||
153 | (xs,rest) = splitAt (m'*n') xs' | ||
154 | v = LA.fromList xs | ||
155 | x = reshape n' v | ||
156 | ok = null rest && ((n' == 0 && dim v == 0) || n'> 0 && (rem (LA.size v) n' == 0) && LA.size x == (m',n')) | ||
157 | m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int | ||
158 | n' = fromIntegral . natVal $ (undefined :: Proxy n) :: Int | ||
159 | abort info = error $ st ++" "++show m' ++ " " ++ show n'++" can't be created from elements " ++ info | ||
160 | |||
161 | -------------------------------------------------------------------------------- | ||
162 | |||
163 | class Num t => Sized t s d | s -> t, s -> d | ||
164 | where | ||
165 | konst :: t -> s | ||
166 | unwrap :: s -> d t | ||
167 | fromList :: [t] -> s | ||
168 | extract :: s -> d t | ||
169 | create :: d t -> Maybe s | ||
170 | size :: s -> IndexOf d | ||
171 | |||
172 | singleV v = LA.size v == 1 | ||
173 | singleM m = rows m == 1 && cols m == 1 | ||
174 | |||
175 | |||
176 | instance forall n. KnownNat n => Sized ℂ (C n) Vector | ||
177 | where | ||
178 | size _ = fromIntegral . natVal $ (undefined :: Proxy n) | ||
179 | konst x = mkC (LA.scalar x) | ||
180 | unwrap (C (Dim v)) = v | ||
181 | fromList xs = C (gvect "C" xs) | ||
182 | extract s@(unwrap -> v) | ||
183 | | singleV v = LA.konst (v!0) (size s) | ||
184 | | otherwise = v | ||
185 | create v | ||
186 | | LA.size v == size r = Just r | ||
187 | | otherwise = Nothing | ||
188 | where | ||
189 | r = mkC v :: C n | ||
190 | |||
191 | |||
192 | instance forall n. KnownNat n => Sized ℝ (R n) Vector | ||
193 | where | ||
194 | size _ = fromIntegral . natVal $ (undefined :: Proxy n) | ||
195 | konst x = mkR (LA.scalar x) | ||
196 | unwrap (R (Dim v)) = v | ||
197 | fromList xs = R (gvect "R" xs) | ||
198 | extract s@(unwrap -> v) | ||
199 | | singleV v = LA.konst (v!0) (size s) | ||
200 | | otherwise = v | ||
201 | create v | ||
202 | | LA.size v == size r = Just r | ||
203 | | otherwise = Nothing | ||
204 | where | ||
205 | r = mkR v :: R n | ||
206 | |||
207 | |||
208 | |||
209 | instance forall m n . (KnownNat m, KnownNat n) => Sized ℝ (L m n) Matrix | ||
210 | where | ||
211 | size _ = ((fromIntegral . natVal) (undefined :: Proxy m) | ||
212 | ,(fromIntegral . natVal) (undefined :: Proxy n)) | ||
213 | konst x = mkL (LA.scalar x) | ||
214 | fromList xs = L (gmat "L" xs) | ||
215 | unwrap (L (Dim (Dim m))) = m | ||
216 | extract (isDiag -> Just (z,y,(m',n'))) = diagRect z y m' n' | ||
217 | extract s@(unwrap -> a) | ||
218 | | singleM a = LA.konst (a `atIndex` (0,0)) (size s) | ||
219 | | otherwise = a | ||
220 | create x | ||
221 | | LA.size x == size r = Just r | ||
222 | | otherwise = Nothing | ||
223 | where | ||
224 | r = mkL x :: L m n | ||
225 | |||
226 | |||
227 | instance forall m n . (KnownNat m, KnownNat n) => Sized ℂ (M m n) Matrix | ||
228 | where | ||
229 | size _ = ((fromIntegral . natVal) (undefined :: Proxy m) | ||
230 | ,(fromIntegral . natVal) (undefined :: Proxy n)) | ||
231 | konst x = mkM (LA.scalar x) | ||
232 | fromList xs = M (gmat "M" xs) | ||
233 | unwrap (M (Dim (Dim m))) = m | ||
234 | extract (isDiagC -> Just (z,y,(m',n'))) = diagRect z y m' n' | ||
235 | extract s@(unwrap -> a) | ||
236 | | singleM a = LA.konst (a `atIndex` (0,0)) (size s) | ||
237 | | otherwise = a | ||
238 | create x | ||
239 | | LA.size x == size r = Just r | ||
240 | | otherwise = Nothing | ||
241 | where | ||
242 | r = mkM x :: M m n | ||
243 | |||
244 | -------------------------------------------------------------------------------- | ||
245 | |||
246 | instance (KnownNat n, KnownNat m) => Transposable (L m n) (L n m) | ||
247 | where | ||
248 | tr a@(isDiag -> Just _) = mkL (extract a) | ||
249 | tr (extract -> a) = mkL (tr a) | ||
250 | tr' = tr | ||
251 | |||
252 | instance (KnownNat n, KnownNat m) => Transposable (M m n) (M n m) | ||
253 | where | ||
254 | tr a@(isDiagC -> Just _) = mkM (extract a) | ||
255 | tr (extract -> a) = mkM (tr a) | ||
256 | tr' a@(isDiagC -> Just _) = mkM (extract a) | ||
257 | tr' (extract -> a) = mkM (tr' a) | ||
258 | |||
259 | -------------------------------------------------------------------------------- | ||
260 | |||
261 | isDiag :: forall m n . (KnownNat m, KnownNat n) => L m n -> Maybe (ℝ, Vector ℝ, (Int,Int)) | ||
262 | isDiag (L x) = isDiagg x | ||
263 | |||
264 | isDiagC :: forall m n . (KnownNat m, KnownNat n) => M m n -> Maybe (ℂ, Vector ℂ, (Int,Int)) | ||
265 | isDiagC (M x) = isDiagg x | ||
266 | |||
267 | |||
268 | isDiagg :: forall m n t . (Numeric t, KnownNat m, KnownNat n) => GM m n t -> Maybe (t, Vector t, (Int,Int)) | ||
269 | isDiagg (Dim (Dim x)) | ||
270 | | singleM x = Nothing | ||
271 | | rows x == 1 && m' > 1 || cols x == 1 && n' > 1 = Just (z,yz,(m',n')) | ||
272 | | otherwise = Nothing | ||
273 | where | ||
274 | m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int | ||
275 | n' = fromIntegral . natVal $ (undefined :: Proxy n) :: Int | ||
276 | v = flatten x | ||
277 | z = v `atIndex` 0 | ||
278 | y = subVector 1 (LA.size v-1) v | ||
279 | ny = LA.size y | ||
280 | zeros = LA.konst 0 (max 0 (min m' n' - ny)) | ||
281 | yz = vjoin [y,zeros] | ||
282 | |||
283 | -------------------------------------------------------------------------------- | ||
284 | |||
285 | instance forall n . KnownNat n => Show (R n) | ||
286 | where | ||
287 | show s@(R (Dim v)) | ||
288 | | singleV v = "("++show (v!0)++" :: R "++show d++")" | ||
289 | | otherwise = "(vector"++ drop 8 (show v)++" :: R "++show d++")" | ||
290 | where | ||
291 | d = size s | ||
292 | |||
293 | instance forall n . KnownNat n => Show (C n) | ||
294 | where | ||
295 | show s@(C (Dim v)) | ||
296 | | singleV v = "("++show (v!0)++" :: C "++show d++")" | ||
297 | | otherwise = "(vector"++ drop 8 (show v)++" :: C "++show d++")" | ||
298 | where | ||
299 | d = size s | ||
300 | |||
301 | instance forall m n . (KnownNat m, KnownNat n) => Show (L m n) | ||
302 | where | ||
303 | show (isDiag -> Just (z,y,(m',n'))) = printf "(diag %s %s :: L %d %d)" (show z) (drop 9 $ show y) m' n' | ||
304 | show s@(L (Dim (Dim x))) | ||
305 | | singleM x = printf "(%s :: L %d %d)" (show (x `atIndex` (0,0))) m' n' | ||
306 | | otherwise = "(matrix"++ dropWhile (/='\n') (show x)++" :: L "++show m'++" "++show n'++")" | ||
307 | where | ||
308 | (m',n') = size s | ||
309 | |||
310 | instance forall m n . (KnownNat m, KnownNat n) => Show (M m n) | ||
311 | where | ||
312 | show (isDiagC -> Just (z,y,(m',n'))) = printf "(diag %s %s :: M %d %d)" (show z) (drop 9 $ show y) m' n' | ||
313 | show s@(M (Dim (Dim x))) | ||
314 | | singleM x = printf "(%s :: M %d %d)" (show (x `atIndex` (0,0))) m' n' | ||
315 | | otherwise = "(matrix"++ dropWhile (/='\n') (show x)++" :: M "++show m'++" "++show n'++")" | ||
316 | where | ||
317 | (m',n') = size s | ||
318 | |||
319 | -------------------------------------------------------------------------------- | ||
320 | |||
321 | instance forall n t . (Num (Vector t), Numeric t )=> Num (Dim n (Vector t)) | ||
322 | where | ||
323 | (+) = lift2F (+) | ||
324 | (*) = lift2F (*) | ||
325 | (-) = lift2F (-) | ||
326 | abs = lift1F abs | ||
327 | signum = lift1F signum | ||
328 | negate = lift1F negate | ||
329 | fromInteger x = Dim (fromInteger x) | ||
330 | |||
331 | instance (Num (Vector t), Num (Matrix t), Fractional t, Numeric t) => Fractional (Dim n (Vector t)) | ||
332 | where | ||
333 | fromRational x = Dim (fromRational x) | ||
334 | (/) = lift2F (/) | ||
335 | |||
336 | instance (Fractional t, Floating (Vector t), Numeric t) => Floating (Dim n (Vector t)) where | ||
337 | sin = lift1F sin | ||
338 | cos = lift1F cos | ||
339 | tan = lift1F tan | ||
340 | asin = lift1F asin | ||
341 | acos = lift1F acos | ||
342 | atan = lift1F atan | ||
343 | sinh = lift1F sinh | ||
344 | cosh = lift1F cosh | ||
345 | tanh = lift1F tanh | ||
346 | asinh = lift1F asinh | ||
347 | acosh = lift1F acosh | ||
348 | atanh = lift1F atanh | ||
349 | exp = lift1F exp | ||
350 | log = lift1F log | ||
351 | sqrt = lift1F sqrt | ||
352 | (**) = lift2F (**) | ||
353 | pi = Dim pi | ||
354 | |||
355 | |||
356 | instance (Num (Matrix t), Numeric t) => Num (Dim m (Dim n (Matrix t))) | ||
357 | where | ||
358 | (+) = (lift2F . lift2F) (+) | ||
359 | (*) = (lift2F . lift2F) (*) | ||
360 | (-) = (lift2F . lift2F) (-) | ||
361 | abs = (lift1F . lift1F) abs | ||
362 | signum = (lift1F . lift1F) signum | ||
363 | negate = (lift1F . lift1F) negate | ||
364 | fromInteger x = Dim (Dim (fromInteger x)) | ||
365 | |||
366 | instance (Num (Vector t), Num (Matrix t), Fractional t, Numeric t) => Fractional (Dim m (Dim n (Matrix t))) | ||
367 | where | ||
368 | fromRational x = Dim (Dim (fromRational x)) | ||
369 | (/) = (lift2F.lift2F) (/) | ||
370 | |||
371 | instance (Num (Vector t), Floating (Matrix t), Fractional t, Numeric t) => Floating (Dim m (Dim n (Matrix t))) where | ||
372 | sin = (lift1F . lift1F) sin | ||
373 | cos = (lift1F . lift1F) cos | ||
374 | tan = (lift1F . lift1F) tan | ||
375 | asin = (lift1F . lift1F) asin | ||
376 | acos = (lift1F . lift1F) acos | ||
377 | atan = (lift1F . lift1F) atan | ||
378 | sinh = (lift1F . lift1F) sinh | ||
379 | cosh = (lift1F . lift1F) cosh | ||
380 | tanh = (lift1F . lift1F) tanh | ||
381 | asinh = (lift1F . lift1F) asinh | ||
382 | acosh = (lift1F . lift1F) acosh | ||
383 | atanh = (lift1F . lift1F) atanh | ||
384 | exp = (lift1F . lift1F) exp | ||
385 | log = (lift1F . lift1F) log | ||
386 | sqrt = (lift1F . lift1F) sqrt | ||
387 | (**) = (lift2F . lift2F) (**) | ||
388 | pi = Dim (Dim pi) | ||
389 | |||
390 | -------------------------------------------------------------------------------- | ||
391 | |||
392 | |||
393 | adaptDiag f a@(isDiag -> Just _) b | isFull b = f (mkL (extract a)) b | ||
394 | adaptDiag f a b@(isDiag -> Just _) | isFull a = f a (mkL (extract b)) | ||
395 | adaptDiag f a b = f a b | ||
396 | |||
397 | isFull m = isDiag m == Nothing && not (singleM (unwrap m)) | ||
398 | |||
399 | |||
400 | lift1L f (L v) = L (f v) | ||
401 | lift2L f (L a) (L b) = L (f a b) | ||
402 | lift2LD f = adaptDiag (lift2L f) | ||
403 | |||
404 | |||
405 | instance (KnownNat n, KnownNat m) => Num (L n m) | ||
406 | where | ||
407 | (+) = lift2LD (+) | ||
408 | (*) = lift2LD (*) | ||
409 | (-) = lift2LD (-) | ||
410 | abs = lift1L abs | ||
411 | signum = lift1L signum | ||
412 | negate = lift1L negate | ||
413 | fromInteger = L . Dim . Dim . fromInteger | ||
414 | |||
415 | instance (KnownNat n, KnownNat m) => Fractional (L n m) | ||
416 | where | ||
417 | fromRational = L . Dim . Dim . fromRational | ||
418 | (/) = lift2LD (/) | ||
419 | |||
420 | instance (KnownNat n, KnownNat m) => Floating (L n m) where | ||
421 | sin = lift1L sin | ||
422 | cos = lift1L cos | ||
423 | tan = lift1L tan | ||
424 | asin = lift1L asin | ||
425 | acos = lift1L acos | ||
426 | atan = lift1L atan | ||
427 | sinh = lift1L sinh | ||
428 | cosh = lift1L cosh | ||
429 | tanh = lift1L tanh | ||
430 | asinh = lift1L asinh | ||
431 | acosh = lift1L acosh | ||
432 | atanh = lift1L atanh | ||
433 | exp = lift1L exp | ||
434 | log = lift1L log | ||
435 | sqrt = lift1L sqrt | ||
436 | (**) = lift2LD (**) | ||
437 | pi = konst pi | ||
438 | |||
439 | -------------------------------------------------------------------------------- | ||
440 | |||
441 | adaptDiagC f a@(isDiagC -> Just _) b | isFullC b = f (mkM (extract a)) b | ||
442 | adaptDiagC f a b@(isDiagC -> Just _) | isFullC a = f a (mkM (extract b)) | ||
443 | adaptDiagC f a b = f a b | ||
444 | |||
445 | isFullC m = isDiagC m == Nothing && not (singleM (unwrap m)) | ||
446 | |||
447 | lift1M f (M v) = M (f v) | ||
448 | lift2M f (M a) (M b) = M (f a b) | ||
449 | lift2MD f = adaptDiagC (lift2M f) | ||
450 | |||
451 | instance (KnownNat n, KnownNat m) => Num (M n m) | ||
452 | where | ||
453 | (+) = lift2MD (+) | ||
454 | (*) = lift2MD (*) | ||
455 | (-) = lift2MD (-) | ||
456 | abs = lift1M abs | ||
457 | signum = lift1M signum | ||
458 | negate = lift1M negate | ||
459 | fromInteger = M . Dim . Dim . fromInteger | ||
460 | |||
461 | instance (KnownNat n, KnownNat m) => Fractional (M n m) | ||
462 | where | ||
463 | fromRational = M . Dim . Dim . fromRational | ||
464 | (/) = lift2MD (/) | ||
465 | |||
466 | instance (KnownNat n, KnownNat m) => Floating (M n m) where | ||
467 | sin = lift1M sin | ||
468 | cos = lift1M cos | ||
469 | tan = lift1M tan | ||
470 | asin = lift1M asin | ||
471 | acos = lift1M acos | ||
472 | atan = lift1M atan | ||
473 | sinh = lift1M sinh | ||
474 | cosh = lift1M cosh | ||
475 | tanh = lift1M tanh | ||
476 | asinh = lift1M asinh | ||
477 | acosh = lift1M acosh | ||
478 | atanh = lift1M atanh | ||
479 | exp = lift1M exp | ||
480 | log = lift1M log | ||
481 | sqrt = lift1M sqrt | ||
482 | (**) = lift2MD (**) | ||
483 | pi = M pi | ||
484 | |||
485 | -------------------------------------------------------------------------------- | ||
486 | |||
487 | |||
488 | class Disp t | ||
489 | where | ||
490 | disp :: Int -> t -> IO () | ||
491 | |||
492 | |||
493 | instance (KnownNat m, KnownNat n) => Disp (L m n) | ||
494 | where | ||
495 | disp n x = do | ||
496 | let a = extract x | ||
497 | let su = LA.dispf n a | ||
498 | printf "L %d %d" (rows a) (cols a) >> putStr (dropWhile (/='\n') $ su) | ||
499 | |||
500 | instance (KnownNat m, KnownNat n) => Disp (M m n) | ||
501 | where | ||
502 | disp n x = do | ||
503 | let a = extract x | ||
504 | let su = LA.dispcf n a | ||
505 | printf "M %d %d" (rows a) (cols a) >> putStr (dropWhile (/='\n') $ su) | ||
506 | |||
507 | |||
508 | instance KnownNat n => Disp (R n) | ||
509 | where | ||
510 | disp n v = do | ||
511 | let su = LA.dispf n (asRow $ extract v) | ||
512 | putStr "R " >> putStr (tail . dropWhile (/='x') $ su) | ||
513 | |||
514 | instance KnownNat n => Disp (C n) | ||
515 | where | ||
516 | disp n v = do | ||
517 | let su = LA.dispcf n (asRow $ extract v) | ||
518 | putStr "C " >> putStr (tail . dropWhile (/='x') $ su) | ||
519 | |||
520 | -------------------------------------------------------------------------------- | ||
521 | |||
522 | #else | ||
523 | |||
524 | module Numeric.LinearAlgebra.Static.Internal where | ||
525 | |||
526 | #endif | ||
527 | |||