summaryrefslogtreecommitdiff
path: root/packages/base/src/Numeric/LinearAlgebra.hs
diff options
context:
space:
mode:
Diffstat (limited to 'packages/base/src/Numeric/LinearAlgebra.hs')
-rw-r--r--packages/base/src/Numeric/LinearAlgebra.hs53
1 files changed, 1 insertions, 52 deletions
diff --git a/packages/base/src/Numeric/LinearAlgebra.hs b/packages/base/src/Numeric/LinearAlgebra.hs
index e899445..0b8abbb 100644
--- a/packages/base/src/Numeric/LinearAlgebra.hs
+++ b/packages/base/src/Numeric/LinearAlgebra.hs
@@ -81,7 +81,6 @@ module Numeric.LinearAlgebra (
81 cholSolve, 81 cholSolve,
82 cgSolve, 82 cgSolve,
83 cgSolve', 83 cgSolve',
84 linearSolve',
85 84
86 -- * Inverse and pseudoinverse 85 -- * Inverse and pseudoinverse
87 inv, pinv, pinvTol, 86 inv, pinv, pinvTol,
@@ -123,7 +122,7 @@ module Numeric.LinearAlgebra (
123 schur, 122 schur,
124 123
125 -- * LU 124 -- * LU
126 lu, luPacked, luFact, luPacked', 125 lu, luPacked, luPacked', luFact,
127 126
128 -- * Matrix functions 127 -- * Matrix functions
129 expm, 128 expm,
@@ -166,7 +165,6 @@ import Internal.Random
166import Internal.Sparse((!#>)) 165import Internal.Sparse((!#>))
167import Internal.CG 166import Internal.CG
168import Internal.Conversion 167import Internal.Conversion
169import Internal.ST(mutable)
170 168
171{- | infix synonym of 'mul' 169{- | infix synonym of 'mul'
172 170
@@ -241,53 +239,4 @@ nullspace m = nullspaceSVD (Left (1*eps)) m (rightSV m)
241-- | return an orthonormal basis of the range space of a matrix. See also 'orthSVD'. 239-- | return an orthonormal basis of the range space of a matrix. See also 'orthSVD'.
242orth m = orthSVD (Left (1*eps)) m (leftSV m) 240orth m = orthSVD (Left (1*eps)) m (leftSV m)
243 241
244{- | Experimental implementation of LU factorization
245 working on any Fractional element type, including 'Mod' n 'I' and 'Mod' n 'Z'.
246
247>>> let m = ident 5 + (5><5) [0..] :: Matrix (Z ./. 17)
248(5><5)
249 [ 1, 1, 2, 3, 4
250 , 5, 7, 7, 8, 9
251 , 10, 11, 13, 13, 14
252 , 15, 16, 0, 2, 2
253 , 3, 4, 5, 6, 8 ]
254
255>>> let (l,u,p,s) = luFact $ luPacked' m
256>>> l
257(5><5)
258 [ 1, 0, 0, 0, 0
259 , 6, 1, 0, 0, 0
260 , 12, 7, 1, 0, 0
261 , 7, 10, 7, 1, 0
262 , 8, 2, 6, 11, 1 ]
263>>> u
264(5><5)
265 [ 15, 16, 0, 2, 2
266 , 0, 13, 7, 13, 14
267 , 0, 0, 15, 0, 11
268 , 0, 0, 0, 15, 15
269 , 0, 0, 0, 0, 1 ]
270
271-}
272luPacked' x = mutable (luST (magnit 0)) x
273
274{- | Experimental implementation of gaussian elimination
275 working on any Fractional element type, including 'Mod' n 'I' and 'Mod' n 'Z'.
276
277>>> let a = (2><2) [1,2,3,5] :: Matrix (Z ./. 13)
278(2><2)
279 [ 1, 2
280 , 3, 5 ]
281>>> b
282(2><3)
283 [ 5, 1, 3
284 , 8, 6, 3 ]
285
286>>> let x = linearSolve' a b
287(2><3)
288 [ 4, 7, 4
289 , 7, 10, 6 ]
290
291-}
292linearSolve' x y = gaussElim x y
293 242