diff options
Diffstat (limited to 'packages/base/src/Numeric')
-rw-r--r-- | packages/base/src/Numeric/LinearAlgebra/Util.hs | 560 |
1 files changed, 0 insertions, 560 deletions
diff --git a/packages/base/src/Numeric/LinearAlgebra/Util.hs b/packages/base/src/Numeric/LinearAlgebra/Util.hs deleted file mode 100644 index 37cdc0f..0000000 --- a/packages/base/src/Numeric/LinearAlgebra/Util.hs +++ /dev/null | |||
@@ -1,560 +0,0 @@ | |||
1 | {-# LANGUAGE FlexibleContexts #-} | ||
2 | {-# LANGUAGE FlexibleInstances #-} | ||
3 | {-# LANGUAGE TypeFamilies #-} | ||
4 | {-# LANGUAGE MultiParamTypeClasses #-} | ||
5 | {-# LANGUAGE FunctionalDependencies #-} | ||
6 | {-# LANGUAGE ViewPatterns #-} | ||
7 | |||
8 | |||
9 | ----------------------------------------------------------------------------- | ||
10 | {- | | ||
11 | Module : Numeric.LinearAlgebra.Util | ||
12 | Copyright : (c) Alberto Ruiz 2013 | ||
13 | License : BSD3 | ||
14 | Maintainer : Alberto Ruiz | ||
15 | Stability : provisional | ||
16 | |||
17 | -} | ||
18 | ----------------------------------------------------------------------------- | ||
19 | |||
20 | module Numeric.LinearAlgebra.Util( | ||
21 | |||
22 | -- * Convenience functions | ||
23 | vector, matrix, | ||
24 | disp, | ||
25 | formatSparse, | ||
26 | approxInt, | ||
27 | dispDots, | ||
28 | dispBlanks, | ||
29 | formatShort, | ||
30 | dispShort, | ||
31 | zeros, ones, | ||
32 | diagl, | ||
33 | row, | ||
34 | col, | ||
35 | (&), (¦), (|||), (——), (===), (#), | ||
36 | (?), (¿), | ||
37 | Indexable(..), size, | ||
38 | Numeric, | ||
39 | rand, randn, | ||
40 | cross, | ||
41 | norm, | ||
42 | ℕ,ℤ,ℝ,ℂ,iC, | ||
43 | Normed(..), norm_Frob, norm_nuclear, | ||
44 | unitary, | ||
45 | mt, | ||
46 | (~!~), | ||
47 | pairwiseD2, | ||
48 | rowOuters, | ||
49 | null1, | ||
50 | null1sym, | ||
51 | -- * Convolution | ||
52 | -- ** 1D | ||
53 | corr, conv, corrMin, | ||
54 | -- ** 2D | ||
55 | corr2, conv2, separable, | ||
56 | gaussElim | ||
57 | ) where | ||
58 | |||
59 | import Data.Packed.Numeric | ||
60 | import Numeric.LinearAlgebra.Algorithms hiding (i,Normed) | ||
61 | --import qualified Numeric.LinearAlgebra.Algorithms as A | ||
62 | import Numeric.Matrix() | ||
63 | import Numeric.Vector() | ||
64 | import Numeric.LinearAlgebra.Random | ||
65 | import Numeric.LinearAlgebra.Util.Convolution | ||
66 | import Control.Monad(when) | ||
67 | import Text.Printf | ||
68 | import Data.List.Split(splitOn) | ||
69 | import Data.List(intercalate,sortBy) | ||
70 | import Data.Function(on) | ||
71 | import Control.Arrow((&&&)) | ||
72 | |||
73 | type ℝ = Double | ||
74 | type ℕ = Int | ||
75 | type ℤ = Int | ||
76 | type ℂ = Complex Double | ||
77 | |||
78 | -- | imaginary unit | ||
79 | iC :: ℂ | ||
80 | iC = 0:+1 | ||
81 | |||
82 | {- | Create a real vector. | ||
83 | |||
84 | >>> vector [1..5] | ||
85 | fromList [1.0,2.0,3.0,4.0,5.0] | ||
86 | |||
87 | -} | ||
88 | vector :: [ℝ] -> Vector ℝ | ||
89 | vector = fromList | ||
90 | |||
91 | {- | Create a real matrix. | ||
92 | |||
93 | >>> matrix 5 [1..15] | ||
94 | (3><5) | ||
95 | [ 1.0, 2.0, 3.0, 4.0, 5.0 | ||
96 | , 6.0, 7.0, 8.0, 9.0, 10.0 | ||
97 | , 11.0, 12.0, 13.0, 14.0, 15.0 ] | ||
98 | |||
99 | -} | ||
100 | matrix | ||
101 | :: Int -- ^ number of columns | ||
102 | -> [ℝ] -- ^ elements in row order | ||
103 | -> Matrix ℝ | ||
104 | matrix c = reshape c . fromList | ||
105 | |||
106 | |||
107 | {- | print a real matrix with given number of digits after the decimal point | ||
108 | |||
109 | >>> disp 5 $ ident 2 / 3 | ||
110 | 2x2 | ||
111 | 0.33333 0.00000 | ||
112 | 0.00000 0.33333 | ||
113 | |||
114 | -} | ||
115 | disp :: Int -> Matrix Double -> IO () | ||
116 | |||
117 | disp n = putStr . dispf n | ||
118 | |||
119 | |||
120 | {- | create a real diagonal matrix from a list | ||
121 | |||
122 | >>> diagl [1,2,3] | ||
123 | (3><3) | ||
124 | [ 1.0, 0.0, 0.0 | ||
125 | , 0.0, 2.0, 0.0 | ||
126 | , 0.0, 0.0, 3.0 ] | ||
127 | |||
128 | -} | ||
129 | diagl :: [Double] -> Matrix Double | ||
130 | diagl = diag . fromList | ||
131 | |||
132 | -- | a real matrix of zeros | ||
133 | zeros :: Int -- ^ rows | ||
134 | -> Int -- ^ columns | ||
135 | -> Matrix Double | ||
136 | zeros r c = konst 0 (r,c) | ||
137 | |||
138 | -- | a real matrix of ones | ||
139 | ones :: Int -- ^ rows | ||
140 | -> Int -- ^ columns | ||
141 | -> Matrix Double | ||
142 | ones r c = konst 1 (r,c) | ||
143 | |||
144 | -- | concatenation of real vectors | ||
145 | infixl 3 & | ||
146 | (&) :: Vector Double -> Vector Double -> Vector Double | ||
147 | a & b = vjoin [a,b] | ||
148 | |||
149 | {- | horizontal concatenation of real matrices | ||
150 | |||
151 | >>> ident 3 ||| konst 7 (3,4) | ||
152 | (3><7) | ||
153 | [ 1.0, 0.0, 0.0, 7.0, 7.0, 7.0, 7.0 | ||
154 | , 0.0, 1.0, 0.0, 7.0, 7.0, 7.0, 7.0 | ||
155 | , 0.0, 0.0, 1.0, 7.0, 7.0, 7.0, 7.0 ] | ||
156 | |||
157 | -} | ||
158 | infixl 3 ||| | ||
159 | (|||) :: Matrix Double -> Matrix Double -> Matrix Double | ||
160 | a ||| b = fromBlocks [[a,b]] | ||
161 | |||
162 | -- | a synonym for ('|||') (unicode 0x00a6, broken bar) | ||
163 | infixl 3 ¦ | ||
164 | (¦) :: Matrix Double -> Matrix Double -> Matrix Double | ||
165 | (¦) = (|||) | ||
166 | |||
167 | |||
168 | -- | vertical concatenation of real matrices | ||
169 | -- | ||
170 | (===) :: Matrix Double -> Matrix Double -> Matrix Double | ||
171 | infixl 2 === | ||
172 | a === b = fromBlocks [[a],[b]] | ||
173 | |||
174 | -- | a synonym for ('===') (unicode 0x2014, em dash) | ||
175 | (——) :: Matrix Double -> Matrix Double -> Matrix Double | ||
176 | infixl 2 —— | ||
177 | (——) = (===) | ||
178 | |||
179 | |||
180 | (#) :: Matrix Double -> Matrix Double -> Matrix Double | ||
181 | infixl 2 # | ||
182 | a # b = fromBlocks [[a],[b]] | ||
183 | |||
184 | -- | create a single row real matrix from a list | ||
185 | -- | ||
186 | -- >>> row [2,3,1,8] | ||
187 | -- (1><4) | ||
188 | -- [ 2.0, 3.0, 1.0, 8.0 ] | ||
189 | -- | ||
190 | row :: [Double] -> Matrix Double | ||
191 | row = asRow . fromList | ||
192 | |||
193 | -- | create a single column real matrix from a list | ||
194 | -- | ||
195 | -- >>> col [7,-2,4] | ||
196 | -- (3><1) | ||
197 | -- [ 7.0 | ||
198 | -- , -2.0 | ||
199 | -- , 4.0 ] | ||
200 | -- | ||
201 | col :: [Double] -> Matrix Double | ||
202 | col = asColumn . fromList | ||
203 | |||
204 | {- | extract rows | ||
205 | |||
206 | >>> (20><4) [1..] ? [2,1,1] | ||
207 | (3><4) | ||
208 | [ 9.0, 10.0, 11.0, 12.0 | ||
209 | , 5.0, 6.0, 7.0, 8.0 | ||
210 | , 5.0, 6.0, 7.0, 8.0 ] | ||
211 | |||
212 | -} | ||
213 | infixl 9 ? | ||
214 | (?) :: Element t => Matrix t -> [Int] -> Matrix t | ||
215 | (?) = flip extractRows | ||
216 | |||
217 | {- | extract columns | ||
218 | |||
219 | (unicode 0x00bf, inverted question mark, Alt-Gr ?) | ||
220 | |||
221 | >>> (3><4) [1..] ¿ [3,0] | ||
222 | (3><2) | ||
223 | [ 4.0, 1.0 | ||
224 | , 8.0, 5.0 | ||
225 | , 12.0, 9.0 ] | ||
226 | |||
227 | -} | ||
228 | infixl 9 ¿ | ||
229 | (¿) :: Element t => Matrix t -> [Int] -> Matrix t | ||
230 | (¿)= flip extractColumns | ||
231 | |||
232 | |||
233 | cross :: Product t => Vector t -> Vector t -> Vector t | ||
234 | -- ^ cross product (for three-element vectors) | ||
235 | cross x y | dim x == 3 && dim y == 3 = fromList [z1,z2,z3] | ||
236 | | otherwise = error $ "the cross product requires 3-element vectors (sizes given: " | ||
237 | ++show (dim x)++" and "++show (dim y)++")" | ||
238 | where | ||
239 | [x1,x2,x3] = toList x | ||
240 | [y1,y2,y3] = toList y | ||
241 | z1 = x2*y3-x3*y2 | ||
242 | z2 = x3*y1-x1*y3 | ||
243 | z3 = x1*y2-x2*y1 | ||
244 | |||
245 | {-# SPECIALIZE cross :: Vector Double -> Vector Double -> Vector Double #-} | ||
246 | {-# SPECIALIZE cross :: Vector (Complex Double) -> Vector (Complex Double) -> Vector (Complex Double) #-} | ||
247 | |||
248 | norm :: Vector Double -> Double | ||
249 | -- ^ 2-norm of real vector | ||
250 | norm = pnorm PNorm2 | ||
251 | |||
252 | class Normed a | ||
253 | where | ||
254 | norm_0 :: a -> ℝ | ||
255 | norm_1 :: a -> ℝ | ||
256 | norm_2 :: a -> ℝ | ||
257 | norm_Inf :: a -> ℝ | ||
258 | |||
259 | |||
260 | instance Normed (Vector ℝ) | ||
261 | where | ||
262 | norm_0 v = sumElements (step (abs v - scalar (eps*normInf v))) | ||
263 | norm_1 = pnorm PNorm1 | ||
264 | norm_2 = pnorm PNorm2 | ||
265 | norm_Inf = pnorm Infinity | ||
266 | |||
267 | instance Normed (Vector ℂ) | ||
268 | where | ||
269 | norm_0 v = sumElements (step (fst (fromComplex (abs v)) - scalar (eps*normInf v))) | ||
270 | norm_1 = pnorm PNorm1 | ||
271 | norm_2 = pnorm PNorm2 | ||
272 | norm_Inf = pnorm Infinity | ||
273 | |||
274 | instance Normed (Matrix ℝ) | ||
275 | where | ||
276 | norm_0 = norm_0 . flatten | ||
277 | norm_1 = pnorm PNorm1 | ||
278 | norm_2 = pnorm PNorm2 | ||
279 | norm_Inf = pnorm Infinity | ||
280 | |||
281 | instance Normed (Matrix ℂ) | ||
282 | where | ||
283 | norm_0 = norm_0 . flatten | ||
284 | norm_1 = pnorm PNorm1 | ||
285 | norm_2 = pnorm PNorm2 | ||
286 | norm_Inf = pnorm Infinity | ||
287 | |||
288 | instance Normed (Vector I) | ||
289 | where | ||
290 | norm_0 = fromIntegral . sumElements . step . abs | ||
291 | norm_1 = fromIntegral . norm1 | ||
292 | norm_2 v = sqrt . fromIntegral $ dot v v | ||
293 | norm_Inf = fromIntegral . normInf | ||
294 | |||
295 | |||
296 | |||
297 | norm_Frob :: (Normed (Vector t), Element t) => Matrix t -> ℝ | ||
298 | norm_Frob = norm_2 . flatten | ||
299 | |||
300 | norm_nuclear :: Field t => Matrix t -> ℝ | ||
301 | norm_nuclear = sumElements . singularValues | ||
302 | |||
303 | |||
304 | -- | Obtains a vector in the same direction with 2-norm=1 | ||
305 | unitary :: Vector Double -> Vector Double | ||
306 | unitary v = v / scalar (norm v) | ||
307 | |||
308 | |||
309 | -- | trans . inv | ||
310 | mt :: Matrix Double -> Matrix Double | ||
311 | mt = trans . inv | ||
312 | |||
313 | -------------------------------------------------------------------------------- | ||
314 | {- | | ||
315 | |||
316 | >>> size $ vector [1..10] | ||
317 | 10 | ||
318 | >>> size $ (2><5)[1..10::Double] | ||
319 | (2,5) | ||
320 | |||
321 | -} | ||
322 | size :: Container c t => c t -> IndexOf c | ||
323 | size = size' | ||
324 | |||
325 | {- | Alternative indexing function. | ||
326 | |||
327 | >>> vector [1..10] ! 3 | ||
328 | 4.0 | ||
329 | |||
330 | On a matrix it gets the k-th row as a vector: | ||
331 | |||
332 | >>> matrix 5 [1..15] ! 1 | ||
333 | fromList [6.0,7.0,8.0,9.0,10.0] | ||
334 | |||
335 | >>> matrix 5 [1..15] ! 1 ! 3 | ||
336 | 9.0 | ||
337 | |||
338 | -} | ||
339 | class Indexable c t | c -> t , t -> c | ||
340 | where | ||
341 | infixl 9 ! | ||
342 | (!) :: c -> Int -> t | ||
343 | |||
344 | instance Indexable (Vector Double) Double | ||
345 | where | ||
346 | (!) = (@>) | ||
347 | |||
348 | instance Indexable (Vector Float) Float | ||
349 | where | ||
350 | (!) = (@>) | ||
351 | |||
352 | instance Indexable (Vector I) I | ||
353 | where | ||
354 | (!) = (@>) | ||
355 | |||
356 | instance Indexable (Vector (Complex Double)) (Complex Double) | ||
357 | where | ||
358 | (!) = (@>) | ||
359 | |||
360 | instance Indexable (Vector (Complex Float)) (Complex Float) | ||
361 | where | ||
362 | (!) = (@>) | ||
363 | |||
364 | instance Element t => Indexable (Matrix t) (Vector t) | ||
365 | where | ||
366 | m!j = subVector (j*c) c (flatten m) | ||
367 | where | ||
368 | c = cols m | ||
369 | |||
370 | -------------------------------------------------------------------------------- | ||
371 | |||
372 | -- | Matrix of pairwise squared distances of row vectors | ||
373 | -- (using the matrix product trick in blog.smola.org) | ||
374 | pairwiseD2 :: Matrix Double -> Matrix Double -> Matrix Double | ||
375 | pairwiseD2 x y | ok = x2 `outer` oy + ox `outer` y2 - 2* x <> trans y | ||
376 | | otherwise = error $ "pairwiseD2 with different number of columns: " | ||
377 | ++ show (size x) ++ ", " ++ show (size y) | ||
378 | where | ||
379 | ox = one (rows x) | ||
380 | oy = one (rows y) | ||
381 | oc = one (cols x) | ||
382 | one k = konst 1 k | ||
383 | x2 = x * x <> oc | ||
384 | y2 = y * y <> oc | ||
385 | ok = cols x == cols y | ||
386 | |||
387 | -------------------------------------------------------------------------------- | ||
388 | |||
389 | {- | outer products of rows | ||
390 | |||
391 | >>> a | ||
392 | (3><2) | ||
393 | [ 1.0, 2.0 | ||
394 | , 10.0, 20.0 | ||
395 | , 100.0, 200.0 ] | ||
396 | >>> b | ||
397 | (3><3) | ||
398 | [ 1.0, 2.0, 3.0 | ||
399 | , 4.0, 5.0, 6.0 | ||
400 | , 7.0, 8.0, 9.0 ] | ||
401 | |||
402 | >>> rowOuters a (b ||| 1) | ||
403 | (3><8) | ||
404 | [ 1.0, 2.0, 3.0, 1.0, 2.0, 4.0, 6.0, 2.0 | ||
405 | , 40.0, 50.0, 60.0, 10.0, 80.0, 100.0, 120.0, 20.0 | ||
406 | , 700.0, 800.0, 900.0, 100.0, 1400.0, 1600.0, 1800.0, 200.0 ] | ||
407 | |||
408 | -} | ||
409 | rowOuters :: Matrix Double -> Matrix Double -> Matrix Double | ||
410 | rowOuters a b = a' * b' | ||
411 | where | ||
412 | a' = kronecker a (ones 1 (cols b)) | ||
413 | b' = kronecker (ones 1 (cols a)) b | ||
414 | |||
415 | -------------------------------------------------------------------------------- | ||
416 | |||
417 | -- | solution of overconstrained homogeneous linear system | ||
418 | null1 :: Matrix Double -> Vector Double | ||
419 | null1 = last . toColumns . snd . rightSV | ||
420 | |||
421 | -- | solution of overconstrained homogeneous symmetric linear system | ||
422 | null1sym :: Matrix Double -> Vector Double | ||
423 | null1sym = last . toColumns . snd . eigSH' | ||
424 | |||
425 | -------------------------------------------------------------------------------- | ||
426 | |||
427 | infixl 0 ~!~ | ||
428 | c ~!~ msg = when c (error msg) | ||
429 | |||
430 | -------------------------------------------------------------------------------- | ||
431 | |||
432 | formatSparse :: String -> String -> String -> Int -> Matrix Double -> String | ||
433 | |||
434 | formatSparse zeroI _zeroF sep _ (approxInt -> Just m) = format sep f m | ||
435 | where | ||
436 | f 0 = zeroI | ||
437 | f x = printf "%.0f" x | ||
438 | |||
439 | formatSparse zeroI zeroF sep n m = format sep f m | ||
440 | where | ||
441 | f x | abs (x::Double) < 2*peps = zeroI++zeroF | ||
442 | | abs (fromIntegral (round x::Int) - x) / abs x < 2*peps | ||
443 | = printf ("%.0f."++replicate n ' ') x | ||
444 | | otherwise = printf ("%."++show n++"f") x | ||
445 | |||
446 | approxInt m | ||
447 | | norm_Inf (v - vi) < 2*peps * norm_Inf v = Just (reshape (cols m) vi) | ||
448 | | otherwise = Nothing | ||
449 | where | ||
450 | v = flatten m | ||
451 | vi = roundVector v | ||
452 | |||
453 | dispDots n = putStr . formatSparse "." (replicate n ' ') " " n | ||
454 | |||
455 | dispBlanks n = putStr . formatSparse "" "" " " n | ||
456 | |||
457 | formatShort sep fmt maxr maxc m = auxm4 | ||
458 | where | ||
459 | (rm,cm) = size m | ||
460 | (r1,r2,r3) | ||
461 | | rm <= maxr = (rm,0,0) | ||
462 | | otherwise = (maxr-3,rm-maxr+1,2) | ||
463 | (c1,c2,c3) | ||
464 | | cm <= maxc = (cm,0,0) | ||
465 | | otherwise = (maxc-3,cm-maxc+1,2) | ||
466 | [ [a,_,b] | ||
467 | ,[_,_,_] | ||
468 | ,[c,_,d]] = toBlocks [r1,r2,r3] | ||
469 | [c1,c2,c3] m | ||
470 | auxm = fromBlocks [[a,b],[c,d]] | ||
471 | auxm2 | ||
472 | | cm > maxc = format "|" fmt auxm | ||
473 | | otherwise = format sep fmt auxm | ||
474 | auxm3 | ||
475 | | cm > maxc = map (f . splitOn "|") (lines auxm2) | ||
476 | | otherwise = (lines auxm2) | ||
477 | f items = intercalate sep (take (maxc-3) items) ++ " .. " ++ | ||
478 | intercalate sep (drop (maxc-3) items) | ||
479 | auxm4 | ||
480 | | rm > maxr = unlines (take (maxr-3) auxm3 ++ vsep : drop (maxr-3) auxm3) | ||
481 | | otherwise = unlines auxm3 | ||
482 | vsep = map g (head auxm3) | ||
483 | g '.' = ':' | ||
484 | g _ = ' ' | ||
485 | |||
486 | |||
487 | dispShort :: Int -> Int -> Int -> Matrix Double -> IO () | ||
488 | dispShort maxr maxc dec m = | ||
489 | printf "%dx%d\n%s" (rows m) (cols m) (formatShort " " fmt maxr maxc m) | ||
490 | where | ||
491 | fmt = printf ("%."++show dec ++"f") | ||
492 | |||
493 | -------------------------------------------------------------------------------- | ||
494 | |||
495 | -- | generic reference implementation of gaussian elimination | ||
496 | -- | ||
497 | -- @a <> gauss a b = b@ | ||
498 | -- | ||
499 | gaussElim | ||
500 | :: (Fractional t, Num (Vector t), Ord t, Indexable (Vector t) t, Numeric t) | ||
501 | => Matrix t -> Matrix t -> Matrix t | ||
502 | |||
503 | gaussElim x y = dropColumns (rows x) (flipud $ fromRows s2) | ||
504 | where | ||
505 | rs = toRows $ fromBlocks [[x , y]] | ||
506 | s1 = pivotDown (rows x) 0 rs | ||
507 | s2 = pivotUp (rows x-1) (reverse s1) | ||
508 | |||
509 | pivotDown t n xs | ||
510 | | t == n = [] | ||
511 | | otherwise = y : pivotDown t (n+1) ys | ||
512 | where | ||
513 | y:ys = redu (pivot n xs) | ||
514 | |||
515 | pivot k = (const k &&& id) | ||
516 | . reverse . sortBy (compare `on` (abs. (!k))) -- FIXME | ||
517 | |||
518 | redu (k,x:zs) | ||
519 | | p == 0 = error "gauss: singular!" -- FIXME | ||
520 | | otherwise = u : map f zs | ||
521 | where | ||
522 | p = x!k | ||
523 | u = scale (recip (x!k)) x | ||
524 | f z = z - scale (z!k) u | ||
525 | redu (_,[]) = [] | ||
526 | |||
527 | |||
528 | pivotUp n xs | ||
529 | | n == -1 = [] | ||
530 | | otherwise = y : pivotUp (n-1) ys | ||
531 | where | ||
532 | y:ys = redu' (n,xs) | ||
533 | |||
534 | redu' (k,x:zs) = u : map f zs | ||
535 | where | ||
536 | u = x | ||
537 | f z = z - scale (z!k) u | ||
538 | redu' (_,[]) = [] | ||
539 | |||
540 | -------------------------------------------------------------------------------- | ||
541 | |||
542 | instance Testable (Matrix I) where | ||
543 | checkT _ = test | ||
544 | |||
545 | test :: (Bool, IO()) | ||
546 | test = (and ok, return ()) | ||
547 | where | ||
548 | m = (3><4) [1..12] :: Matrix I | ||
549 | r = (2><3) [1,2,3,4,3,2] | ||
550 | c = (3><2) [0,4,4,1,2,3] | ||
551 | p = (9><10) [0..89] :: Matrix I | ||
552 | ep = (2><3) [10,24,32,44,31,23] | ||
553 | md = fromInt m :: Matrix Double | ||
554 | ok = [ tr m <> m == toInt (tr md <> md) | ||
555 | , m <> tr m == toInt (md <> tr md) | ||
556 | , m ?? (Take 2, Take 3) == remap (asColumn (range 2)) (asRow (range 3)) m | ||
557 | , remap r (tr c) p == ep | ||
558 | , tr p ?? (PosCyc (idxs[-5,13]), Pos (idxs[3,7,1])) == (2><3) [35,75,15,33,73,13] | ||
559 | ] | ||
560 | |||