1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
{-# LANGUAGE BangPatterns #-}
-- $ ghc --make -O2 benchmarks.hs
import Numeric.LinearAlgebra
import System.Time
import System.CPUTime
import Text.Printf
import Data.List(foldl1')
time act = do
t0 <- getCPUTime
act
t1 <- getCPUTime
printf "%.3f s CPU\n" $ (fromIntegral (t1 - t0) / (10^12 :: Double)) :: IO ()
--------------------------------------------------------------------------------
main = sequence_ [bench1,bench2,bench4,
bench5 1000000 3,
bench5 100000 50]
w :: Vector Double
w = constant 1 5000000
w2 = 1 * w
v = flatten $ ident 500 :: Vector Double
bench1 = do
time $ print$ vectorMax (w+w2) -- evaluate it
putStrLn "Sum of a vector with 5M doubles:"
print$ vectorMax (w+w2) -- evaluate it
time $ printf " BLAS: %.2f: " $ sumVB w
time $ printf "BLAS only dot: %.2f: " $ w <.> w2
time $ printf " Haskell: %.2f: " $ sumVH w
time $ printf " innerH: %.2f: " $ innerH w w2
time $ printf "foldVector: %.2f: " $ sumVector w
let getPos k s = if k `mod` 500 < 200 && w@>k > 0 then k:s else s
putStrLn "foldLoop for element selection:"
time $ print $ (`divMod` 500) $ maximum $ foldLoop getPos [] (dim w)
putStrLn "constant 5M:"
time $ print $ constant (1::Double) 5000001 @> 7
time $ print $ constant i 5000001 @> 7
time $ print $ conj (constant i 5000001) @> 7
putStrLn "zips C vs H:"
time $ print $ (w / w2) @> 7
time $ print $ (zipVector (/) w w2) @> 7
putStrLn "folds C/BLAS vs H:"
let t = constant (1::Double) 5000002
print $ t @> 7
time $ print $ foldVector max (t@>0) t
time $ print $ vectorMax t
time $ print $ sqrt $ foldVector (\v s -> v*v+s) 0 t
time $ print $ pnorm PNorm2 t
sumVB v = constant 1 (dim v) <.> v
sumVH v = go (d - 1) 0
where
d = dim v
go :: Int -> Double -> Double
go 0 s = s + (v @> 0)
go !j !s = go (j - 1) (s + (v @> j))
innerH u v = go (d - 1) 0
where
d = min (dim u) (dim v)
go :: Int -> Double -> Double
go 0 s = s + (u @> 0) * (v @> 0)
go !j !s = go (j - 1) (s + (u @> j) * (v @> j))
-- sumVector = foldVectorG (\k v s -> v k + s) 0.0
sumVector = foldVector (+) 0.0
--------------------------------------------------------------------------------
bench2 = do
putStrLn "-------------------------------------------------------"
putStrLn "Multiplication of 1M different 3x3 matrices:"
-- putStrLn "from [[]]"
-- time $ print $ manymult (10^6) rot'
-- putStrLn "from (3><3) []"
time $ print $ manymult (10^6) rot
print $ cos (10^6/2)
rot' :: Double -> Matrix Double
rot' a = matrix [[ c,0,s],
[ 0,1,0],
[-s,0,c]]
where c = cos a
s = sin a
matrix = fromLists
rot :: Double -> Matrix Double
rot a = (3><3) [ c,0,s
, 0,1,0
,-s,0,c ]
where c = cos a
s = sin a
manymult n r = foldl1' (<>) (map r angles)
where angles = toList $ linspace n (0,1)
-- angles = map (k*) [0..n']
-- n' = fromIntegral n - 1
-- k = recip n'
--------------------------------------------------------------------------------
bench4 = do
putStrLn "-------------------------------------------------------"
putStrLn "1000x1000 inverse"
let a = ident 1000 :: Matrix Double
let b = 2*a
print $ vectorMax $ flatten (a+b) -- evaluate it
time $ print $ vectorMax $ flatten $ linearSolve a b
--------------------------------------------------------------------------------
op1 a b = a <> trans b
op2 a b = a + trans b
timep = time . print . vectorMax . flatten
bench5 n d = do
putStrLn "-------------------------------------------------------"
putStrLn "transpose in add"
let ms = replicate n ((ident d :: Matrix Double))
timep $ foldl1' (+) ms
timep $ foldl1' op2 ms
putStrLn "-------------------------------------------------------"
putStrLn "transpose in multiply"
timep $ foldl1' (<>) ms
timep $ foldl1' op1 ms
|