1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
{-# LANGUAGE BangPatterns #-}
-- $ ghc --make -O2 benchmarks.hs
import Numeric.LinearAlgebra
import System.Time
import System.CPUTime
import Text.Printf
import Data.List(foldl1')
time act = do
t0 <- getCPUTime
act
t1 <- getCPUTime
printf "%.3f s CPU\n" $ (fromIntegral (t1 - t0) / (10^12 :: Double)) :: IO ()
--------------------------------------------------------------------------------
main = sequence_ [bench1,bench2,bench3,bench4,bench5 1000000 3]
w :: Vector Double
w = constant 1 5000000
w2 = 1 * w
bench1 = do
putStrLn "Sum of a vector with 5M doubles:"
print$ vectorMax (w+w2) -- evaluate it
time $ printf " BLAS: %.2f: " $ sumVB w
time $ printf " Haskell: %.2f: " $ sumVH w
time $ printf " BLAS: %.2f: " $ sumVB w
time $ printf " Haskell: %.2f: " $ sumVH w
time $ printf " innerH: %.2f: " $ innerH w w2
sumVB v = constant 1 (dim v) <.> v
sumVH v = go (d - 1) 0
where
d = dim v
go :: Int -> Double -> Double
go 0 s = s + (v @> 0)
go !j !s = go (j - 1) (s + (v @> j))
innerH u v = go (d - 1) 0
where
d = dim u
go :: Int -> Double -> Double
go 0 s = s + (u @> 0) * (v @> 0)
go !j !s = go (j - 1) (s + (u @> j) * (v @> j))
-- These functions are much faster if the library
-- is configured with -funsafe
--------------------------------------------------------------------------------
bench2 = do
putStrLn "-------------------------------------------------------"
putStrLn "Multiplication of 1M different 3x3 matrices:"
-- putStrLn "from [[]]"
-- time $ print $ manymult (10^6) rot'
-- putStrLn "from (3><3) []"
time $ print $ manymult (10^6) rot
print $ cos (10^6/2)
rot' :: Double -> Matrix Double
rot' a = matrix [[ c,0,s],
[ 0,1,0],
[-s,0,c]]
where c = cos a
s = sin a
matrix = fromLists
rot :: Double -> Matrix Double
rot a = (3><3) [ c,0,s
, 0,1,0
,-s,0,c ]
where c = cos a
s = sin a
manymult n r = foldl1' (<>) (map r angles)
where angles = toList $ linspace n (0,1)
-- angles = map (k*) [0..n']
-- n' = fromIntegral n - 1
-- k = recip n'
--------------------------------------------------------------------------------
bench3 = do
putStrLn "-------------------------------------------------------"
putStrLn "foldVector"
let v = flatten $ ident 500 :: Vector Double
print $ vectorMax v -- evaluate it
putStrLn "sum, dim=5M:"
-- time $ print $ foldLoop (\k s -> w@>k + s) 0.0 (dim w)
time $ print $ sumVector w
putStrLn "sum, dim=0.25M:"
--time $ print $ foldLoop (\k s -> v@>k + s) 0.0 (dim v)
time $ print $ sumVector v
let getPos k s = if k `mod` 500 < 200 && v@>k > 0 then k:s else s
putStrLn "foldLoop for element selection, dim=0.25M:"
time $ print $ (`divMod` 500) $ maximum $ foldLoop getPos [] (dim v)
foldLoop f s d = go (d - 1) s
where
go 0 s = f (0::Int) s
go !j !s = go (j - 1) (f j s)
foldVector f s v = foldLoop g s (dim v)
where g !k !s = f k (v@>) s
{-# INLINE g #-} -- Thanks Ryan Ingram (http://permalink.gmane.org/gmane.comp.lang.haskell.cafe/46479)
sumVector = foldVector (\k v s -> v k + s) 0.0
-- foldVector is slower if used in two places unless we use the above INLINE
-- this does not happen with foldLoop
--------------------------------------------------------------------------------
bench4 = do
putStrLn "-------------------------------------------------------"
putStrLn "1000x1000 inverse"
let a = ident 1000 :: Matrix Double
let b = 2*a
print $ vectorMax $ flatten (a+b) -- evaluate it
time $ print $ vectorMax $ flatten $ linearSolve a b
--------------------------------------------------------------------------------
op1 a b = a <> trans b
op2 a b = a + trans b
timep = time . print . vectorMax . flatten
bench5 n d = do
putStrLn "-------------------------------------------------------"
putStrLn "transpose in multiply"
let ms = replicate n ((ident d :: Matrix Double))
let mz = replicate n (diag (constant (0::Double) d))
timep $ foldl1' (<>) ms
timep $ foldl1' op1 ms
putStrLn "-------------------------------------------------------"
putStrLn "transpose in add"
timep $ foldl1' (+) ms
timep $ foldl1' op2 ms
|