1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
-- some tests of the interface for pure
-- computations with inplace updates
{-# LANGUAGE FlexibleContexts #-}
import Numeric.LinearAlgebra
import Numeric.LinearAlgebra.Devel
import Data.Array.Unboxed
import Data.Array.ST
import Control.Monad.ST
import Control.Monad
main = sequence_[
print test1,
print test2,
print test3,
print test4,
-- test5,
-- test6,
-- print test7,
test8,
test0]
-- hmatrix vector and matrix
v = vector [1..10]
m = (5><10) [1..50::Double]
----------------------------------------------------------------------
-- vector creation by in-place updates on a copy of the argument
test1 = fun v
-- fun :: (Num t, Element t, Container) => Vector t -> Vector t
fun x = runSTVector $ do
a <- thawVector x
mapM_ (flip (modifyVector a) (+57)) [0 .. size x `div` 2 - 1]
return a
-- another example: creation of an antidiagonal matrix from a list
test2 = antiDiag 5 8 [1..] :: Matrix Double
-- antiDiag :: (Element b) => Int -> Int -> [b] -> Matrix b
antiDiag r c l = runSTMatrix $ do
m <- newMatrix 0 r c
let d = min r c - 1
sequence_ $ zipWith (\i v -> writeMatrix m i (c-1-i) v) [0..d] l
return m
-- using vector or matrix functions on mutable objects requires freezing:
test3 = g1 v
g1 x = runST $ do
a <- thawVector x
writeVector a (size x -1) 0
b <- freezeVector a
return (norm_2 b)
-- another possibility:
test4 = g2 v
g2 x = runST $ do
a <- thawVector x
writeVector a (size x -1) 0
t <- liftSTVector norm_2 a
return t
--------------------------------------------------------------
{-
-- haskell arrays
hv = listArray (0,9) [1..10::Double]
hm = listArray ((0,0),(4,9)) [1..50::Double]
-- conversion from standard Haskell arrays
test5 = do
print $ norm_2 (vectorFromArray hv)
print $ norm_2 v
print $ rcond (matrixFromArray hm)
print $ rcond m
-- conversion to mutable ST arrays
test6 = do
let y = clearColumn m 1
print y
print (matrixFromArray y)
clearColumn x c = runSTUArray $ do
a <- mArrayFromMatrix x
forM_ [0..rows x-1] $ \i->
writeArray a (i,c) (0::Double)
return a
-- hmatrix functions applied to mutable ST arrays
test7 = unitary (listArray (1,4) [3,5,7,2] :: UArray Int Double)
unitary v = runSTUArray $ do
a <- thaw v
n <- norm_2 `fmap` vectorFromMArray a
b <- mapArray (/n) a
return b
-}
-------------------------------------------------
-- (just to check that they are not affected)
test0 = do
print v
print m
--print hv
--print hm
-------------------------------------------------
histogram n ds = runSTVector $ do
h <- newVector (0::Double) n -- number of bins
let inc k = modifyVector h k (+1)
mapM_ inc ds
return h
-- check that newVector is really called with a fresh new array
histoCheck ds = runSTVector $ do
h <- newVector (0::Double) 15 -- > constant for this test
let inc k = modifyVector h k (+1)
mapM_ inc ds
return h
hc = fromList [1 .. 15::Double]
-- check that thawVector creates a new array
histoCheck2 ds = runSTVector $ do
h <- thawVector hc
let inc k = modifyVector h k (+1)
mapM_ inc ds
return h
test8 = do
let ds = [0..14]
print $ histogram 15 ds
print $ histogram 15 ds
print $ histogram 15 ds
print $ histoCheck ds
print $ histoCheck ds
print $ histoCheck ds
print $ histoCheck2 ds
print $ histoCheck2 ds
print $ histoCheck2 ds
putStrLn "----------------------"
|