1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
--{-# OPTIONS_GHC #-}
--module Main where
import Data.Packed.Internal
import Data.Packed.Internal.Vector
import Data.Packed.Internal.Matrix
import Data.Packed.Internal.Tensor
import Data.Packed.Matrix
import GSL.Vector
import LAPACK
import Complex
import Numeric(showGFloat)
import Data.List(transpose,intersperse,sort,elemIndex,nub,foldl',foldl1')
import Foreign.Storable
vr = fromList [1..15::Double]
vc = fromList (map (\x->x :+ (x+1)) [1..15::Double])
mi = (2 >< 3) [1 .. 6::Int]
mz = (2 >< 3) [1,2,3,4,5,6:+(1::Double)]
ac = (2><3) [1 .. 6::Double]
bc = (3><4) [7 .. 18::Double]
af = (2>|<3) [1,4,2,5,3,6::Double]
bf = (3>|<4) [7,11,15,8,12,16,9,13,17,10,14,18::Double]
a |=| b = rows a == rows b &&
cols a == cols b &&
toList (cdat a) == toList (cdat b)
mulC a b = multiply RowMajor a b
mulF a b = multiply ColumnMajor a b
cc = mulC ac bf
cf = mulF af bc
r = mulC cc (trans cf)
rd = (2><2)
[ 27736.0, 65356.0
, 65356.0, 154006.0 ]
main = do
print $ r |=| rd
print $ foldl part t [("p",1),("q",0),("r",2)]
print $ foldl part t [("p",1),("r",2),("q",0)]
print $ foldl part t $ reverse [("p",1),("r",2),("q",0)]
t = T [(4,(Covariant,"p")),(2,(Covariant,"q")),(3,(Contravariant,"r"))] $ fromList [1..24::Double]
t1 = T [(4,(Covariant,"p")),(4,(Contravariant,"q")),(2,(Covariant,"r"))] $ fromList [1..32::Double]
t2 = T [(4,(Covariant,"p")),(4,(Contravariant,"q"))] $ fromList [1..16::Double]
addT ts = T (dims (head ts)) (fromList $ sumT ts)
delta i j | i==j = 1
| otherwise = 0
e i n = fromList [ delta k i | k <- [1..n]]
diagl = diag.fromList
scalar x = T [] (fromList [x])
tensorFromVector idx v = T {dims = [(dim v,idx)], ten = v}
tensorFromMatrix idxr idxc m = T {dims = [(rows m,idxr),(cols m,idxc)], ten = cdat m}
td = tensorFromMatrix (Contravariant,"i") (Covariant,"j") $ diagl [1..4] :: Tensor Double
tn = tensorFromMatrix (Contravariant,"i") (Covariant,"j") $ (2><3) [1..6] :: Tensor Double
tt = tensorFromMatrix (Contravariant,"i") (Covariant,"j") $ (2><3) [1..6] :: Tensor Double
tq = T [(3,(Covariant,"p")),(2,(Covariant,"q")),(2,(Covariant,"r"))] $ fromList [11 .. 22] :: Tensor Double
r1 = contraction tt "j" tq "p"
r1' = contraction' tt "j" tq "p"
pru = do
mapM_ (putStrLn.shdims.dims.normal) (contractions t1 t2)
let t1 = contraction tt "i" tq "q"
print $ normal t1
print $ foldl part t1 [("j",0),("p'",1),("r'",1)]
let t2 = contraction' tt "i" tq "q"
print $ normal t2
print $ foldl part t2 [("j",0),("p'",1),("r'",1)]
let t1 = contraction tq "q" tt "i"
print $ normal t1
print $ foldl part t1 [("j'",0),("p",1),("r",1)]
let t2 = contraction' tq "q" tt "i"
print $ normal t2
print $ foldl part t2 [("j'",0),("p",1),("r",1)]
scsig t = scalar (signature (nms t)) `prod` t
where nms = map (snd.snd) . dims
antisym' t = addT $ map (scsig . flip tridx t) (perms (names t))
{-
where T d v = t
t' = T d' v
fixdim (T _ v) = T d v
d' = [(n,(c,show (pos q))) | (n,(c,q)) <- d]
pos n = i where Just i = elemIndex n nms
nms = map (snd.snd) d
-}
auxrename (T d v) = T d' v
where d' = [(n,(c,show (pos q))) | (n,(c,q)) <- d]
pos n = i where Just i = elemIndex n nms
nms = map (snd.snd) d
antisym t = T (dims t) (ten (antisym' (auxrename t)))
norper t = prod t (scalar (recip $ fromIntegral $ product [1 .. length (dims t)]))
antinorper t = prod t (scalar (fromIntegral $ product [1 .. length (dims t)]))
tvector n v = tensorFromVector (Contravariant,n) v
tcovector n v = tensorFromVector (Covariant,n) v
vector n v = tvector n (fromList v) :: Tensor Double
wedge a b = antisym (prod (norper a) (norper b))
a /\ b = wedge a b
a <*> b = normal $ prod a b
u = vector "p" [1,1,0]
v = vector "q" [0,1,1]
w = vector "r" [1,0,1]
uv = u /\ v
uw = u /\ w
normAT t = sqrt $ innerAT t t
innerAT t1 t2 = dot (ten t1) (ten t2) / fromIntegral (fact $ length $ dims t1)
det m = product $ toList s where (_,s,_) = svdR' m
fact n = product [1..n]
l1 = vector "p" [0,0,0,1]
l2 = vector "q" [1,0,0,1]
l3 = vector "r" [0,1,0,1]
leviCivita n = antisym $ foldl1 prod $ zipWith tcovector (map show [1..]) (toRows (ident n))
contractionF t1 t2 = contraction t1 n1 t2 n2
where n1 = fn t1
n2 = fn t2
fn = snd . snd . head . dims
dualV vs = foldl' contractionF (leviCivita n) vs
where n = fst . head . dims . head $ vs
dual1 = foldl' contractionF (leviCivita 3) [u,v]
dual2 = foldl' contractionF (leviCivita 3) [u,v,w]
contract1b t (n1,n2) = contract1 t n1 n2
dual1' = prod (foldl' contract1b ((leviCivita 3) <*> (u /\ v)) [("1","p'"),("2'","q''")]) (scalar (recip $ fact 2))
dual2' = prod (foldl' contract1b ((leviCivita 3) <*> (u /\ v /\ w)) [("1","p'"),("2'","q''"),("3'","r''")]) (scalar (recip $ fact 3))
x1 = vector "p" [0,0,1]
x2 = vector "q" [2,2,2]
x3 = vector "r" [-3,-1,-1]
x4 = vector "s" [12,0,3]
raise (T d v) = T (map raise' d) v
where raise' (n,(Covariant,s)) = (n,(Contravariant,s))
raise' (n,(Contravariant,s)) = (n,(Covariant,s))
dualMV t = prod (foldl' contract1b (lc <*> t) ds) (scalar (recip $ fromIntegral $ fact (length ds)))
where
lc = leviCivita n
nms1 = map (snd.snd) (dims lc)
nms2 = map ((++"'").snd.snd) (dims t)
ds = zip nms1 nms2
n = fst . head . dims $ t
-- intersection of two lines :-)
-- > raise $ dualMV $ raise $ dualMV (x1/\x2) /\ dualV [x3,x4]
--(3'^[3]) [24.0,24.0,12.0]
y1 = vector "p" [0,0,0,1]
y2 = vector "q" [2,2,0,2]
y3 = vector "r" [-3,-1,0,-1]
y4 = vector "s" [12,0,0,3]
-- why not in R^4?
-- > raise $ dualMV $ raise $ dualMV (y1/\y2) /\ dualV [y3,y4]
-- scalar 0.0
-- it seems that the sum of ranks must be greater than n :(
asBase r n = filter (\x-> (x==nub x && x==sort x)) $ sequence $ replicate r [1..n]
partF t i = part t (name,i) where name = snd . snd . head . dims $ t
--partL = foldl' partF
niceAS t = filter ((/=0.0).fst) $ zip vals base
where vals = map ((`at` 0).ten.foldl' partF t) (map (map pred) base)
base = asBase r n
r = length (dims t)
n = fst . head . dims $ t
z1 = vector "p" [0,0,0,1]
z2 = vector "q" [1,0,0,1]
z3 = vector "r" [0,1,0,1]
z4 = vector "s" [0,0,1,1]
|