1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
--{-# OPTIONS_GHC #-}
--module Main where
{-
import Data.Packed.Internal
import Data.Packed.Internal.Vector
import Data.Packed.Internal.Matrix
import Data.Packed.Tensor
import Data.Packed.Matrix
import GSL.Vector
import LAPACK
import Data.List(foldl')
import Complex
import Numeric(showGFloat)
import Foreign.Storable
-}
import GSL
import Data.List(foldl', foldl1')
import Data.Packed.Internal.Tensor
import Data.Packed.Tensor
import Complex
main = do
print $ foldl part t [("p",1),("q",0),("r",2)]
print $ foldl part t [("p",1),("r",2),("q",0)]
print $ foldl part t $ reverse [("p",1),("r",2),("q",0)]
pru
t = T [IdxDesc 4 Covariant "p",IdxDesc 2 Covariant "q" ,IdxDesc 3 Contravariant "r"]
$ fromList [1..24::Double]
t1 = T [IdxDesc 4 Covariant "p",IdxDesc 4 Contravariant "q" ,IdxDesc 2 Covariant "r"]
$ fromList [1..32::Double]
t2 = T [IdxDesc 4 Covariant "p",IdxDesc 4 Contravariant "q"]
$ fromList [1..16::Double]
vector n v = tvector n (fromList v) :: Tensor Double
kron n = tensorFromMatrix (Contravariant,"k1") (Covariant,"k2") (ident n)
tensorFromTrans m = tensorFromMatrix (Contravariant,"1") (Covariant,"2") m
tam = (3><3) [1..9]
tbm = (3><3) [11..19]
ta = tensorFromMatrix (Contravariant,"a1") (Covariant,"a2") tam :: Tensor Double
tb = tensorFromMatrix (Contravariant,"b1") (Covariant,"b2") tbm :: Tensor Double
delta i j | i==j = 1
| otherwise = 0
e i n = fromList [ delta k i | k <- [1..n]]
diagl = diag.fromList
td = tensorFromMatrix (Contravariant,"i") (Covariant,"j") $ diagl [1..4] :: Tensor Double
tn = tensorFromMatrix (Contravariant,"i") (Covariant,"j") $ (2><3) [1..6] :: Tensor Double
tt = tensorFromMatrix (Contravariant,"i") (Covariant,"j") $ (2><3) [1..6] :: Tensor Double
tq = T [IdxDesc 3 Covariant "p",IdxDesc 2 Covariant "q" ,IdxDesc 2 Covariant "r"]
$ fromList [11 .. 22] :: Tensor Double
r1 = contraction tt "j" tq "p"
r1' = contraction' tt "j" tq "p"
pru = do
mapM_ (putStrLn.shdims.dims.normal) (possibleContractions t1 t2)
let t1 = contraction tt "i" tq "q"
print $ normal t1
print $ foldl part t1 [("j",0),("p'",1),("r'",1)]
let t2 = contraction' tt "i" tq "q"
print $ normal t2
print $ foldl part t2 [("j",0),("p'",1),("r'",1)]
let t1 = contraction tq "q" tt "i"
print $ normal t1
print $ foldl part t1 [("j'",0),("p",1),("r",1)]
let t2 = contraction' tq "q" tt "i"
print $ normal t2
print $ foldl part t2 [("j'",0),("p",1),("r",1)]
putStrLn "--------------------------------------------"
print $ flatten $ tam <> tbm
print $ contractions (ta <*> tb <*> kron 3) [("a2","k1'"),("b1'","k2'")]
print $ contraction ta "a2" tb "b1"
print $ normal $ contractions (ta <*> tb) [("a2","b1'")]
print $ normal $ contraction' ta "a2" tb "b1"
putStrLn "--------------------------------------------"
print $ raise $ dualMV $ raise $ dualMV (x1/\x2) /\ dualV [x3,x4]
putStrLn "--------------------------------------------"
print $ foldl' contractionF (leviCivita 4) [y1,y2]
print $ contractions (leviCivita 4 <*> (y1/\y2)) [("1","p'"),("2'","q''")] <*> (scalar (recip $ fact 2))
print $ foldl' contractionF (leviCivita 4) [y1,y2,y3,y5]
print $ contractions (leviCivita 4 <*> (y1/\y2/\y3/\y5)) [("1","p'"),("2'","q''"),("3'","r''"),("4'","t''")] <*> (scalar (recip $ fact 4))
print $ dim $ ten $ leviCivita 4 <*> (y1/\y2/\y3/\y5)
print $ innerAT (leviCivita 4) (y1/\y2/\y3/\y5)
y5 = vector "t" [0,1,-2,0]
u = vector "p" [1,1,0]
v = vector "q" [0,1,1]
w = vector "r" [1,0,1]
uv = u /\ v
uw = u /\ w
l1 = vector "p" [0,0,0,1]
l2 = vector "q" [1,0,0,1]
l3 = vector "r" [0,1,0,1]
dual1 = foldl' contractionF (leviCivita 3) [u,v]
dual2 = foldl' contractionF (leviCivita 3) [u,v,w]
dual1' = prod (foldl' contract1b ((leviCivita 3) <*> (u /\ v)) [("1","p'"),("2'","q''")]) (scalar (recip $ fact 2))
dual2' = prod (foldl' contract1b ((leviCivita 3) <*> (u /\ v /\ w)) [("1","p'"),("2'","q''"),("3'","r''")]) (scalar (recip $ fact 3))
x1 = vector "p" [0,0,1]
x2 = vector "q" [2,2,2]
x3 = vector "r" [-3,-1,-1]
x4 = vector "s" [12,0,3]
-- intersection of two lines :-)
-- > raise $ dualMV $ raise $ dualMV (x1/\x2) /\ dualV [x3,x4]
--(3'^[3]) [24.0,24.0,12.0]
y1 = vector "p" [0,0,0,1]
y2 = vector "q" [2,2,0,2]
y3 = vector "r" [-3,-1,0,-1]
y4 = vector "s" [12,0,0,3]
-- why not in R^4?
-- > raise $ dualMV $ raise $ dualMV (y1/\y2) /\ dualV [y3,y4]
-- scalar 0.0
-- it seems that the sum of ranks must be greater than n :(
z1 = vector "p" [0,0,0,1]
z2 = vector "q" [1,0,0,1]
z3 = vector "r" [0,1,0,1]
z4 = vector "s" [0,0,1,1]
|