1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
{-# OPTIONS_GHC -fglasgow-exts -fallow-undecidable-instances #-}
module Main where
import Data.Packed.Internal((>|<), fdat, cdat, multiply', multiplyG, MatrixOrder(..),debug)
import Numeric.GSL hiding (sin,cos,exp,choose)
import Numeric.LinearAlgebra
import Numeric.LinearAlgebra.Linear(Linear)
import Numeric.LinearAlgebra.LAPACK
import Numeric.GSL.Matrix(svdg)
import qualified Numeric.GSL.Matrix as GSL
import Test.QuickCheck hiding (test)
import Test.HUnit hiding ((~:),test)
import System.Random(randomRs,mkStdGen)
type RM = Matrix Double
type CM = Matrix (Complex Double)
dist :: (Normed t, Num t) => t -> t -> Double
dist a b = pnorm Infinity (a-b)
infixl 4 |~|
a |~| b = a :~8~: b
data Aprox a = (:~) a Int
(~:) :: (Normed a, Num a) => Aprox a -> a -> Bool
a :~n~: b = dist a b < 10^^(-n)
maxdim = 10
instance (Arbitrary a, RealFloat a) => Arbitrary (Complex a) where
arbitrary = do
r <- arbitrary
i <- arbitrary
return (r:+i)
coarbitrary = undefined
instance (Field a, Arbitrary a) => Arbitrary (Matrix a) where
arbitrary = do --m <- sized $ \max -> choose (1,1+3*max)
m <- choose (1,maxdim)
n <- choose (1,maxdim)
l <- vector (m*n)
ctype <- arbitrary
let h = if ctype then (m><n) else (m>|<n)
trMode <- arbitrary
let tr = if trMode then trans else id
return $ tr (h l)
coarbitrary = undefined
data PairM a = PairM (Matrix a) (Matrix a) deriving Show
instance (Num a, Field a, Arbitrary a) => Arbitrary (PairM a) where
arbitrary = do
a <- choose (1,maxdim)
b <- choose (1,maxdim)
c <- choose (1,maxdim)
l1 <- vector (a*b)
l2 <- vector (b*c)
return $ PairM ((a><b) (map fromIntegral (l1::[Int]))) ((b><c) (map fromIntegral (l2::[Int])))
--return $ PairM ((a><b) l1) ((b><c) l2)
coarbitrary = undefined
data SqM a = SqM (Matrix a) deriving Show
sqm (SqM a) = a
instance (Field a, Arbitrary a) => Arbitrary (SqM a) where
arbitrary = do
n <- choose (1,maxdim)
l <- vector (n*n)
return $ SqM $ (n><n) l
coarbitrary = undefined
data Sym a = Sym (Matrix a) deriving Show
sym (Sym a) = a
instance (Linear Vector a, Arbitrary a) => Arbitrary (Sym a) where
arbitrary = do
SqM m <- arbitrary
return $ Sym (m + trans m)
coarbitrary = undefined
data Her = Her (Matrix (Complex Double)) deriving Show
her (Her a) = a
instance {-(Field a, Arbitrary a, Num a) =>-} Arbitrary Her where
arbitrary = do
SqM m <- arbitrary
return $ Her (m + ctrans m)
coarbitrary = undefined
data PairSM a = PairSM (Matrix a) (Matrix a) deriving Show
instance (Num a, Field a, Arbitrary a) => Arbitrary (PairSM a) where
arbitrary = do
a <- choose (1,maxdim)
c <- choose (1,maxdim)
l1 <- vector (a*a)
l2 <- vector (a*c)
return $ PairSM ((a><a) (map fromIntegral (l1::[Int]))) ((a><c) (map fromIntegral (l2::[Int])))
--return $ PairSM ((a><a) l1) ((a><c) l2)
coarbitrary = undefined
instance (Field a, Arbitrary a) => Arbitrary (Vector a) where
arbitrary = do --m <- sized $ \max -> choose (1,1+3*max)
m <- choose (1,maxdim^2)
l <- vector m
return $ fromList l
coarbitrary = undefined
data PairV a = PairV (Vector a) (Vector a)
instance (Field a, Arbitrary a) => Arbitrary (PairV a) where
arbitrary = do --m <- sized $ \max -> choose (1,1+3*max)
m <- choose (1,maxdim^2)
l1 <- vector m
l2 <- vector m
return $ PairV (fromList l1) (fromList l2)
coarbitrary = undefined
----------------------------------------------------------------------
test str b = TestCase $ assertBool str b
----------------------------------------------------------------------
pseudorandomR seed (n,m) = reshape m $ fromList $ take (n*m) $ randomRs (-100,100) $ mkStdGen seed
pseudorandomC seed (n,m) = toComplex (pseudorandomR seed (n,m), pseudorandomR (seed+1) (n,m))
bigmat = m + trans m :: RM
where m = pseudorandomR 18 (1000,1000)
bigmatc = mc + ctrans mc ::CM
where mc = pseudorandomC 19 (1000,1000)
----------------------------------------------------------------------
m = (3><3)
[ 1, 2, 3
, 4, 5, 7
, 2, 8, 4 :: Double
]
mc = (3><3)
[ 1, 2, 3
, 4, 5, 7
, 2, 8, i
]
mr = (3><4)
[ 1, 2, 3, 4,
2, 4, 6, 8,
1, 1, 1, 2:: Double
]
mrc = (3><4)
[ 1, 2, 3, 4,
2, 4, 6, 8,
i, i, i, 2
]
a = (3><4)
[ 1, 0, 0, 0
, 0, 2, 0, 0
, 0, 0, 0, 0 :: Double
]
b = (3><4)
[ 1, 0, 0, 0
, 0, 2, 3, 0
, 0, 0, 4, 0 :: Double
]
ac = (2><3) [1 .. 6::Double]
bc = (3><4) [7 .. 18::Double]
af = (2>|<3) [1,4,2,5,3,6::Double]
bf = (3>|<4) [7,11,15,8,12,16,9,13,17,10,14,18::Double]
-------------------------------------------------------
detTest = det m == 26 && det mc == 38 :+ (-3)
invTest m = degenerate m || m <> inv m |~| ident (rows m)
pinvTest m = m <> p <> m |~| m
&& p <> m <> p |~| p
&& hermitian (m<>p)
&& hermitian (p<>m)
where p = pinv m
square m = rows m == cols m
orthonormal m = square m && m <> ctrans m |~| ident (rows m)
hermitian m = m |~| ctrans m
svdTest svd m = u <> real d <> trans v |~| m
&& orthonormal u && orthonormal v
where (u,d,v) = full svd m
svdTest' svd m = m |~| 0 || u <> real (diag s) <> trans v |~| m
where (u,s,v) = economy svd m
eigTest m = complex m <> v |~| v <> diag s
where (s, v) = eig m
eigTestSH m = m <> v |~| v <> real (diag s)
&& orthonormal v
&& m |~| v <> real (diag s) <> ctrans v
where (s, v) = eigSH m
rank m | m |~| 0 = 0
| otherwise = dim s where (_,s,_) = economy svd m
zeros (r,c) = reshape c (constant 0 (r*c))
ones (r,c) = zeros (r,c) + 1
degenerate m = rank m < min (rows m) (cols m)
prec = 1E-15
singular m = s1 < prec || s2/s1 < prec
where (_,ss,_) = svd m
s = toList ss
s1 = maximum s
s2 = minimum s
nullspaceTest m = null nl || m <> n |~| zeros (r,c) -- 0
where nl = nullspacePrec 1 m
n = fromColumns nl
r = rows m
c = cols m - rank m
--------------------------------------------------------------------
polyEval cs x = foldr (\c ac->ac*x+c) 0 cs
polySolveTest' p = length p <2 || last p == 0|| 1E-8 > maximum (map magnitude $ map (polyEval (map (:+0) p)) (polySolve p))
polySolveTest = test "polySolve" (polySolveTest' [1,2,3,4])
---------------------------------------------------------------------
quad f a b = fst $ integrateQAGS 1E-9 100 f a b
-- A multiple integral can be easily defined using partial application
quad2 f a b g1 g2 = quad h a b
where h x = quad (f x) (g1 x) (g2 x)
volSphere r = 8 * quad2 (\x y -> sqrt (r*r-x*x-y*y))
0 r (const 0) (\x->sqrt (r*r-x*x))
epsTol = 1E-8::Double
integrateTest = test "integrate" (abs (volSphere 2.5 - 4/3*pi*2.5^3) < epsTol)
---------------------------------------------------------------------
besselTest = test "bessel_J0_e" ( abs (r-expected) < e )
where (r,e) = bessel_J0_e 5.0
expected = -0.17759677131433830434739701
exponentialTest = test "exp_e10_e" ( abs (v*10^e - expected) < 4E-2 )
where (v,e,err) = exp_e10_e 30.0
expected = exp 30.0
gammaTest = test "gamma" (gamma 5 == 24.0)
---------------------------------------------------------------------
cholRTest = chol ((2><2) [1,2,2,9::Double]) == (2><2) [1,2,0,2.23606797749979]
cholCTest = chol ((2><2) [1,2,2,9::Complex Double]) == (2><2) [1,2,0,2.23606797749979]
---------------------------------------------------------------------
qrTest qr m = q <> r |~| m && q <> ctrans q |~| ident (rows m)
where (q,r) = qr m
---------------------------------------------------------------------
asFortran m = (rows m >|< cols m) $ toList (fdat m)
asC m = (rows m >< cols m) $ toList (cdat m)
mulC a b = multiply' RowMajor a b
mulF a b = multiply' ColumnMajor a b
---------------------------------------------------------------------
tests = do
putStrLn "--------- internal -----"
quickCheck ((\m -> m == trans m).sym :: Sym Double -> Bool)
quickCheck ((\m -> m == trans m).sym :: Sym (Complex Double) -> Bool)
quickCheck $ \l -> null l || (toList . fromList) l == (l :: [Double])
quickCheck $ \l -> null l || (toList . fromList) l == (l :: [Complex Double])
quickCheck $ \m -> m == asC (m :: RM)
quickCheck $ \m -> m == asC (m :: CM)
quickCheck $ \m -> m == asFortran (m :: RM)
quickCheck $ \m -> m == asFortran (m :: CM)
quickCheck $ \m -> m == (asC . asFortran) (m :: RM)
quickCheck $ \m -> m == (asC . asFortran) (m :: CM)
putStrLn "--------- multiply ----"
quickCheck $ \(PairM m1 m2) -> mulC m1 m2 == mulF m1 (m2 :: RM)
quickCheck $ \(PairM m1 m2) -> mulC m1 m2 == mulF m1 (m2 :: CM)
quickCheck $ \(PairM m1 m2) -> mulC m1 m2 == trans (mulF (trans m2) (trans m1 :: RM))
quickCheck $ \(PairM m1 m2) -> mulC m1 m2 == trans (mulF (trans m2) (trans m1 :: CM))
quickCheck $ \(PairM m1 m2) -> mulC m1 m2 == multiplyG m1 (m2 :: RM)
quickCheck $ \(PairM m1 m2) -> mulC m1 m2 == multiplyG m1 (m2 :: CM)
putStrLn "--------- svd ---------"
quickCheck (svdTest svdR)
quickCheck (svdTest svdRdd)
quickCheck (svdTest svdC)
quickCheck (svdTest' svdR)
quickCheck (svdTest' svdRdd)
quickCheck (svdTest' svdC)
quickCheck (svdTest' svdg)
putStrLn "--------- eig ---------"
quickCheck (eigTest . sqm :: SqM Double -> Bool)
quickCheck (eigTest . sqm :: SqM (Complex Double) -> Bool)
quickCheck (eigTestSH . sym :: Sym Double -> Bool)
quickCheck (eigTestSH . her :: Her -> Bool)
putStrLn "--------- inv ------"
quickCheck (invTest . sqm :: SqM Double -> Bool)
quickCheck (invTest . sqm :: SqM (Complex Double) -> Bool)
putStrLn "--------- pinv ------"
quickCheck (pinvTest . sqm :: SqM Double -> Bool)
quickCheck (pinvTest . sqm :: SqM (Complex Double) -> Bool)
putStrLn "--------- chol ------"
runTestTT $ TestList
[ test "cholR" cholRTest
, test "cholC" cholRTest
]
putStrLn "--------- qr ---------"
quickCheck (qrTest GSL.qr)
quickCheck (qrTest (GSL.unpackQR . GSL.qrPacked))
quickCheck (qrTest ( unpackQR . GSL.qrPacked))
quickCheck (qrTest qr ::RM->Bool)
quickCheck (qrTest qr ::CM->Bool)
putStrLn "--------- nullspace ------"
quickCheck (nullspaceTest :: RM -> Bool)
quickCheck (nullspaceTest :: CM -> Bool)
putStrLn "--------- vector operations ------"
quickCheck $ (\u -> sin u ^ 2 + cos u ^ 2 |~| (1::RM))
quickCheck $ (\u -> sin u ** 2 + cos u ** 2 |~| (1::RM))
quickCheck $ (\u -> cos u * tan u |~| sin (u::RM))
quickCheck $ (\u -> (cos u * tan u) :~6~: sin (u::CM))
runTestTT $ TestList
[ test "arith1" $ ((ones (100,100) * 5 + 2)/0.5 - 7)**2 |~| (49 :: RM)
, test "arith2" $ (((1+i) .* ones (100,100) * 5 + 2)/0.5 - 7)**2 |~| ( (140*i-51).*1 :: CM)
, test "arith3" $ exp (i.*ones(10,10)*pi) + 1 |~| 0
, test "<\\>" $ (3><2) [2,0,0,3,1,1::Double] <\> 3|>[4,9,5] |~| 2|>[2,3]
]
putStrLn "--------- GSL ------"
quickCheck $ \v -> ifft (fft v) |~| v
runTestTT $ TestList
[ gammaTest
, besselTest
, exponentialTest
, integrateTest
, polySolveTest
, test "det" detTest
]
bigtests = do
putStrLn "--------- big matrices -----"
runTestTT $ TestList
[ test "eigS" $ eigTestSH bigmat
, test "eigH" $ eigTestSH bigmatc
, test "eigR" $ eigTest bigmat
, test "eigC" $ eigTest bigmatc
]
main = tests
|