1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
{-# OPTIONS_GHC -fglasgow-exts #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Packed.Internal.Matrix
-- Copyright : (c) Alberto Ruiz 2007
-- License : GPL-style
--
-- Maintainer : Alberto Ruiz <aruiz@um.es>
-- Stability : provisional
-- Portability : portable (uses FFI)
--
-- Internal matrix representation
--
-----------------------------------------------------------------------------
-- #hide
module Data.Packed.Internal.Matrix where
import Data.Packed.Internal.Common
import Data.Packed.Internal.Vector
import Foreign hiding (xor)
import Complex
import Control.Monad(when)
import Data.Maybe(fromJust)
import Foreign.C.String
import Foreign.C.Types
import Data.List(transpose)
-----------------------------------------------------------------
{- Design considerations for the Matrix Type
-----------------------------------------
- we must easily handle both row major and column major order,
for bindings to LAPACK and GSL/C
- we'd like to simplify redundant matrix transposes:
- Some of them arise from the order requirements of some functions
- some functions (matrix product) admit transposed arguments
- maybe we don't really need this kind of simplification:
- more complex code
- some computational overhead
- only appreciable gain in code with a lot of redundant transpositions
and cheap matrix computations
- we could carry both the matrix and its (lazily computed) transpose.
This may save some transpositions, but it is necessary to keep track of the
data which is actually computed to be used by functions like the matrix product
which admit both orders.
- but if we need the transposed data and it is not in the structure, we must make
sure that we touch the same foreignptr that is used in the computation.
- a reasonable solution is using two constructors for a matrix. Transposition just
"flips" the constructor. Actual data transposition is not done if followed by a
matrix product or another transpose.
-}
data MatrixOrder = RowMajor | ColumnMajor deriving (Show,Eq)
-- | Matrix representation suitable for GSL and LAPACK computations.
data Matrix t = MC { rows :: Int, cols :: Int, cdat :: Vector t }
| MF { rows :: Int, cols :: Int, fdat :: Vector t }
-- MC: preferred by C, fdat may require a transposition
-- MF: preferred by LAPACK, cdat may require a transposition
-- | Matrix transpose.
trans :: Matrix t -> Matrix t
trans MC {rows = r, cols = c, cdat = d } = MF {rows = c, cols = r, fdat = d }
trans MF {rows = r, cols = c, fdat = d } = MC {rows = c, cols = r, cdat = d }
cmat m@MC{} = m
cmat MF {rows = r, cols = c, fdat = d } = MC {rows = r, cols = c, cdat = transdata r d c}
fmat m@MF{} = m
fmat MC {rows = r, cols = c, cdat = d } = MF {rows = r, cols = c, fdat = transdata c d r}
mat = withMatrix
withMatrix MC {rows = r, cols = c, cdat = d } f =
withForeignPtr (fptr d) $ \p -> do
let m f = do
f r c p
f m
withMatrix MF {rows = r, cols = c, fdat = d } f =
withForeignPtr (fptr d) $ \p -> do
let m f = do
f r c p
f m
{- | Creates a vector by concatenation of rows
@\> flatten ('ident' 3)
9 |> [1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0]@
-}
flatten :: Element t => Matrix t -> Vector t
flatten = cdat . cmat
type Mt t s = Int -> Int -> Ptr t -> s
-- not yet admitted by my haddock version
-- infixr 6 ::>
-- type t ::> s = Mt t s
-- | the inverse of 'Data.Packed.Matrix.fromLists'
toLists :: (Element t) => Matrix t -> [[t]]
toLists m = partit (cols m) . toList . flatten $ m
-- | creates a Matrix from a list of vectors
fromRows :: Element t => [Vector t] -> Matrix t
fromRows vs = case common dim vs of
Nothing -> error "fromRows applied to [] or to vectors with different sizes"
Just c -> reshape c (join vs)
-- | extracts the rows of a matrix as a list of vectors
toRows :: Element t => Matrix t -> [Vector t]
toRows m = toRows' 0 where
v = flatten $ m
r = rows m
c = cols m
toRows' k | k == r*c = []
| otherwise = subVector k c v : toRows' (k+c)
-- | Creates a matrix from a list of vectors, as columns
fromColumns :: Element t => [Vector t] -> Matrix t
fromColumns m = trans . fromRows $ m
-- | Creates a list of vectors from the columns of a matrix
toColumns :: Element t => Matrix t -> [Vector t]
toColumns m = toRows . trans $ m
-- | Reads a matrix position.
(@@>) :: Storable t => Matrix t -> (Int,Int) -> t
infixl 9 @@>
--m@M {rows = r, cols = c} @@> (i,j)
-- | i<0 || i>=r || j<0 || j>=c = error "matrix indexing out of range"
-- | otherwise = cdat m `at` (i*c+j)
MC {rows = r, cols = c, cdat = v} @@> (i,j)
| i<0 || i>=r || j<0 || j>=c = error "matrix indexing out of range"
| otherwise = v `at` (i*c+j)
MF {rows = r, cols = c, fdat = v} @@> (i,j)
| i<0 || i>=r || j<0 || j>=c = error "matrix indexing out of range"
| otherwise = v `at` (j*r+i)
------------------------------------------------------------------
matrixFromVector RowMajor c v = MC { rows = r, cols = c, cdat = v }
where (d,m) = dim v `divMod` c
r | m==0 = d
| otherwise = error "matrixFromVector"
matrixFromVector ColumnMajor c v = MF { rows = r, cols = c, fdat = v }
where (d,m) = dim v `divMod` c
r | m==0 = d
| otherwise = error "matrixFromVector"
createMatrix order r c = do
p <- createVector (r*c)
return (matrixFromVector order c p)
{- | Creates a matrix from a vector by grouping the elements in rows with the desired number of columns. (GNU-Octave groups by columns. To do it you can define @reshapeF r = trans . reshape r@
where r is the desired number of rows.)
@\> reshape 4 ('fromList' [1..12])
(3><4)
[ 1.0, 2.0, 3.0, 4.0
, 5.0, 6.0, 7.0, 8.0
, 9.0, 10.0, 11.0, 12.0 ]@
-}
reshape :: Element t => Int -> Vector t -> Matrix t
reshape c v = matrixFromVector RowMajor c v
singleton x = reshape 1 (fromList [x])
-- | application of a vector function on the flattened matrix elements
liftMatrix :: (Element a, Element b) => (Vector a -> Vector b) -> Matrix a -> Matrix b
liftMatrix f MC { cols = c, cdat = d } = matrixFromVector RowMajor c (f d)
liftMatrix f MF { cols = c, fdat = d } = matrixFromVector ColumnMajor c (f d)
-- | application of a vector function on the flattened matrices elements
liftMatrix2 :: (Element t, Element a, Element b) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t
liftMatrix2 f m1 m2
| not (compat m1 m2) = error "nonconformant matrices in liftMatrix2"
| otherwise = case m1 of
MC {} -> matrixFromVector RowMajor (cols m1) (f (cdat m1) (flatten m2))
MF {} -> matrixFromVector ColumnMajor (cols m1) (f (fdat m1) ((fdat.fmat) m2))
compat :: Matrix a -> Matrix b -> Bool
compat m1 m2 = rows m1 == rows m2 && cols m1 == cols m2
----------------------------------------------------------------
-- | Optimized matrix computations are provided for elements in the Element class.
class (Storable a, Floating a) => Element a where
constantD :: a -> Int -> Vector a
transdata :: Int -> Vector a -> Int -> Vector a
multiplyD :: Matrix a -> Matrix a -> Matrix a
subMatrixD :: (Int,Int) -- ^ (r0,c0) starting position
-> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
-> Matrix a -> Matrix a
diagD :: Vector a -> Matrix a
instance Element Double where
constantD = constantR
transdata = transdataR
multiplyD = multiplyR
subMatrixD = subMatrixR
diagD = diagR
instance Element (Complex Double) where
constantD = constantC
transdata = transdataC
multiplyD = multiplyC
subMatrixD = subMatrixC
diagD = diagC
------------------------------------------------------------------
(>|<) :: (Element a) => Int -> Int -> [a] -> Matrix a
r >|< c = f where
f l | dim v == r*c = matrixFromVector ColumnMajor c v
| otherwise = error $ "inconsistent list size = "
++show (dim v) ++" in ("++show r++"><"++show c++")"
where v = fromList l
-------------------------------------------------------------------
transdataR :: Int -> Vector Double -> Int -> Vector Double
transdataR = transdataAux ctransR
transdataC :: Int -> Vector (Complex Double) -> Int -> Vector (Complex Double)
transdataC = transdataAux ctransC
transdataAux fun c1 d c2 =
if noneed
then d
else unsafePerformIO $ do
v <- createVector (dim d)
withForeignPtr (fptr d) $ \pd ->
withForeignPtr (fptr v) $ \pv ->
fun r1 c1 pd r2 c2 pv // check "transdataAux"
-- putStrLn $ "---> transdataAux" ++ show (toList d) ++ show (toList v)
return v
where r1 = dim d `div` c1
r2 = dim d `div` c2
noneed = r1 == 1 || c1 == 1
foreign import ccall safe "auxi.h transR"
ctransR :: TMM -- Double ::> Double ::> IO Int
foreign import ccall safe "auxi.h transC"
ctransC :: TCMCM -- Complex Double ::> Complex Double ::> IO Int
------------------------------------------------------------------
gmatC MF {rows = r, cols = c, fdat = d} p f = f 1 c r p
gmatC MC {rows = r, cols = c, cdat = d} p f = f 0 r c p
dtt MC { cdat = d } = d
dtt MF { fdat = d } = d
multiplyAux fun a b = unsafePerformIO $ do
when (cols a /= rows b) $ error $ "inconsistent dimensions in contraction "++
show (rows a,cols a) ++ " x " ++ show (rows b, cols b)
r <- createMatrix RowMajor (rows a) (cols b)
withForeignPtr (fptr (dtt a)) $ \pa -> withForeignPtr (fptr (dtt b)) $ \pb ->
withMatrix r $ \r ->
fun // gmatC a pa // gmatC b pb // r // check "multiplyAux"
return r
multiplyR = multiplyAux cmultiplyR
foreign import ccall safe "auxi.h multiplyR"
cmultiplyR :: Int -> Int -> Int -> Ptr Double
-> Int -> Int -> Int -> Ptr Double
-> Int -> Int -> Ptr Double
-> IO Int
multiplyC = multiplyAux cmultiplyC
foreign import ccall safe "auxi.h multiplyC"
cmultiplyC :: Int -> Int -> Int -> Ptr (Complex Double)
-> Int -> Int -> Int -> Ptr (Complex Double)
-> Int -> Int -> Ptr (Complex Double)
-> IO Int
multiply' :: (Element a) => MatrixOrder -> Matrix a -> Matrix a -> Matrix a
multiply' RowMajor a b = multiplyD a b
multiply' ColumnMajor a b = trans $ multiplyD (trans b) (trans a)
-- | matrix product
multiply :: (Element a) => Matrix a -> Matrix a -> Matrix a
multiply = multiplyD
----------------------------------------------------------------------
-- | extraction of a submatrix from a real matrix
subMatrixR :: (Int,Int) -> (Int,Int) -> Matrix Double -> Matrix Double
subMatrixR (r0,c0) (rt,ct) x' = unsafePerformIO $ do
r <- createMatrix RowMajor rt ct
let x = cmat x'
app2 (c_submatrixR r0 (r0+rt-1) c0 (c0+ct-1)) mat x mat r "subMatrixR"
return r
foreign import ccall "auxi.h submatrixR" c_submatrixR :: Int -> Int -> Int -> Int -> TMM
-- | extraction of a submatrix from a complex matrix
subMatrixC :: (Int,Int) -> (Int,Int) -> Matrix (Complex Double) -> Matrix (Complex Double)
subMatrixC (r0,c0) (rt,ct) x =
reshape ct . asComplex . flatten .
subMatrixR (r0,2*c0) (rt,2*ct) .
reshape (2*cols x) . asReal . flatten $ x
-- | Extracts a submatrix from a matrix.
subMatrix :: Element a
=> (Int,Int) -- ^ (r0,c0) starting position
-> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
-> Matrix a -- ^ input matrix
-> Matrix a -- ^ result
subMatrix = subMatrixD
---------------------------------------------------------------------
diagAux fun msg (v@V {dim = n}) = unsafePerformIO $ do
m <- createMatrix RowMajor n n
app2 fun vec v mat m msg
return m
-- | diagonal matrix from a real vector
diagR :: Vector Double -> Matrix Double
diagR = diagAux c_diagR "diagR"
foreign import ccall "auxi.h diagR" c_diagR :: TVM
-- | diagonal matrix from a real vector
diagC :: Vector (Complex Double) -> Matrix (Complex Double)
diagC = diagAux c_diagC "diagC"
foreign import ccall "auxi.h diagC" c_diagC :: TCVCM
-- | creates a square matrix with the given diagonal
diag :: Element a => Vector a -> Matrix a
diag = diagD
------------------------------------------------------------------------
constantAux fun x n = unsafePerformIO $ do
v <- createVector n
px <- newArray [x]
app1 (fun px) vec v "constantAux"
free px
return v
constantR :: Double -> Int -> Vector Double
constantR = constantAux cconstantR
foreign import ccall "auxi.h constantR"
cconstantR :: Ptr Double -> TV -- Double :> IO Int
constantC :: Complex Double -> Int -> Vector (Complex Double)
constantC = constantAux cconstantC
foreign import ccall "auxi.h constantC"
cconstantC :: Ptr (Complex Double) -> TCV -- Complex Double :> IO Int
{- | creates a vector with a given number of equal components:
@> constant 2 7
7 |> [2.0,2.0,2.0,2.0,2.0,2.0,2.0]@
-}
constant :: Element a => a -> Int -> Vector a
constant = constantD
--------------------------------------------------------------------------
-- | obtains the complex conjugate of a complex vector
conj :: Vector (Complex Double) -> Vector (Complex Double)
conj v = asComplex $ flatten $ reshape 2 (asReal v) `multiply` diag (fromList [1,-1])
-- | creates a complex vector from vectors with real and imaginary parts
toComplex :: (Vector Double, Vector Double) -> Vector (Complex Double)
toComplex (r,i) = asComplex $ flatten $ fromColumns [r,i]
-- | the inverse of 'toComplex'
fromComplex :: Vector (Complex Double) -> (Vector Double, Vector Double)
fromComplex z = (r,i) where
[r,i] = toColumns $ reshape 2 $ asReal z
-- | converts a real vector into a complex representation (with zero imaginary parts)
comp :: Vector Double -> Vector (Complex Double)
comp v = toComplex (v,constant 0 (dim v))
-- | loads a matrix efficiently from formatted ASCII text file (the number of rows and columns must be known in advance).
fromFile :: FilePath -> (Int,Int) -> IO (Matrix Double)
fromFile filename (r,c) = do
charname <- newCString filename
res <- createMatrix RowMajor r c
app1 (c_gslReadMatrix charname) mat res "gslReadMatrix"
--free charname -- TO DO: free the auxiliary CString
return res
foreign import ccall "auxi.h matrix_fscanf" c_gslReadMatrix:: Ptr CChar -> TM
-------------------------------------------------------------------------
-- Generic definitions
{-
transL m = matrixFromVector RowMajor (rows m) $ transdata (cols m) (cdat m) (rows m)
subMatrixG (r0,c0) (rt,ct) x = matrixFromVector RowMajor ct $ fromList $ concat $ map (subList c0 ct) (subList r0 rt (toLists x))
where subList s n = take n . drop s
diagG v = matrixFromVector RowMajor c $ fromList $ [ l!!(i-1) * delta k i | k <- [1..c], i <- [1..c]]
where c = dim v
l = toList v
delta i j | i==j = 1
| otherwise = 0
-}
transdataG c1 d c2 = fromList . concat . transpose . partit c1 . toList $ d
dotL a b = sum (zipWith (*) a b)
multiplyG a b = matrixFromVector RowMajor (cols b) $ fromList $ concat $ multiplyL (toLists a) (toLists b)
multiplyL a b | ok = [[dotL x y | y <- transpose b] | x <- a]
| otherwise = error "inconsistent dimensions in contraction "
where ok = case common length a of
Nothing -> False
Just c -> c == length b
|