summaryrefslogtreecommitdiff
path: root/lib/Data/Packed/Internal/Matrix.hs
blob: 48652f3ea1e3b79177ff74e9a657bbf46d29f5d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
{-# OPTIONS_GHC -fglasgow-exts -fallow-overlapping-instances #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Packed.Internal.Matrix
-- Copyright   :  (c) Alberto Ruiz 2007
-- License     :  GPL-style
--
-- Maintainer  :  Alberto Ruiz <aruiz@um.es>
-- Stability   :  provisional
-- Portability :  portable (uses FFI)
--
-- Fundamental types
--
-----------------------------------------------------------------------------

module Data.Packed.Internal.Matrix where

import Data.Packed.Internal.Common
import Data.Packed.Internal.Vector

import Foreign hiding (xor)
import Complex
import Control.Monad(when)
import Data.List(transpose,intersperse)
--import Data.Typeable
import Data.Maybe(fromJust)

----------------------------------------------------------------

class Storable a => Field a where
    constant :: a -> Int -> Vector a
    transdata :: Int -> Vector a -> Int -> Vector a
    multiplyD :: MatrixOrder -> Matrix a -> Matrix a -> Matrix a
    subMatrix :: (Int,Int) -- ^ (r0,c0) starting position 
              -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
              -> Matrix a -> Matrix a
    diag :: Vector a -> Matrix a


instance Field Double where
    constant  = constantR
    transdata = transdataR
    multiplyD = multiplyR
    subMatrix = subMatrixR
    diag      = diagR

instance Field (Complex Double) where
    constant  = constantC
    transdata = transdataC
    multiplyD = multiplyC
    subMatrix = subMatrixC
    diag      = diagC

-----------------------------------------------------------------

transdataR :: Int -> Vector Double -> Int -> Vector Double
transdataR = transdataAux ctransR

transdataC :: Int -> Vector (Complex Double) -> Int -> Vector (Complex Double)
transdataC = transdataAux ctransC

transdataAux fun c1 d c2 =
    if noneed
        then d
        else unsafePerformIO $ do
            v <- createVector (dim d)
            fun r1 c1 (ptr d) r2 c2 (ptr v) // check "transdataAux" [d]
            --putStrLn "---> transdataAux"
            return v
  where r1 = dim d `div` c1
        r2 = dim d `div` c2
        noneed = r1 == 1 || c1 == 1

foreign import ccall safe "aux.h transR"
    ctransR :: TMM -- Double ::> Double ::> IO Int
foreign import ccall safe "aux.h transC"
    ctransC :: TCMCM -- Complex Double ::> Complex Double ::> IO Int

transdataG c1 d c2 = fromList . concat . transpose . partit c1 . toList $ d





data MatrixOrder = RowMajor | ColumnMajor deriving (Show,Eq)

data Matrix t = M { rows    :: Int
                  , cols    :: Int
                  , dat     :: Vector t
                  , tdat    :: Vector t
                  , isTrans :: Bool
                  , order   :: MatrixOrder
                  } -- deriving Typeable


data NMat t = MC { rws, cls :: Int, dtc :: Vector t}
            | MF { rws, cls :: Int, dtf :: Vector t}
            | Tr (NMat t)

ntrans (Tr m) = m
ntrans m = Tr m

viewC m@MC{} = m
viewF m@MF{} = m

fortran m = order m == ColumnMajor

cdat m = if fortran m `xor` isTrans m then tdat m else dat m
fdat m = if fortran m `xor` isTrans m then dat m else tdat m

trans :: Matrix t -> Matrix t
trans m = m { rows = cols m
            , cols = rows m
            , isTrans = not (isTrans m)
            }

type Mt t s = Int -> Int -> Ptr t -> s
-- not yet admitted by my haddock version
-- infixr 6 ::>
-- type t ::> s = Mt t s

mat d m f = f (rows m) (cols m) (ptr (d m))

toLists :: (Storable t) => Matrix t -> [[t]]
toLists m = partit (cols m) . toList . cdat $ m

instance (Show a, Storable a) => (Show (Matrix a)) where
    show m = (sizes++) . dsp . map (map show) . toLists $ m
        where sizes = "("++show (rows m)++"><"++show (cols m)++")\n"

dsp as = (++" ]") . (" ["++) . init . drop 2 . unlines . map (" , "++) . map unwords' $ transpose mtp
    where
        mt = transpose as
        longs = map (maximum . map length) mt
        mtp = zipWith (\a b -> map (pad a) b) longs mt
        pad n str = replicate (n - length str) ' ' ++ str
        unwords' = concat . intersperse ", "

matrixFromVector RowMajor c v =
    M { rows = r
      , cols = c
      , dat  = v
      , tdat = transdata c v r
      , order = RowMajor
      , isTrans = False
      } where (d,m) = dim v `divMod` c
              r | m==0 = d
                | otherwise = error "matrixFromVector"

-- r = dim v `div` c -- TODO check mod=0

matrixFromVector ColumnMajor c v =
    M { rows = r
      , cols = c
      , dat  = v
      , tdat = transdata r v c
      , order = ColumnMajor
      , isTrans = False
      } where (d,m) = dim v `divMod` c
              r | m==0 = d
                | otherwise = error "matrixFromVector"

createMatrix order r c = do
    p <- createVector (r*c)
    return (matrixFromVector order c p)

{- | Creates a matrix from a vector by grouping the elements in rows with the desired number of columns.

@\> reshape 4 ('fromList' [1..12])
(3><4)
 [ 1.0,  2.0,  3.0,  4.0
 , 5.0,  6.0,  7.0,  8.0
 , 9.0, 10.0, 11.0, 12.0 ]@

-}
reshape :: Field t => Int -> Vector t -> Matrix t
reshape c v = matrixFromVector RowMajor c v

singleton x = reshape 1 (fromList [x])

liftMatrix :: (Field a, Field b) => (Vector a -> Vector b) -> Matrix a -> Matrix b
liftMatrix f m = reshape (cols m) (f (cdat m))

liftMatrix2 :: (Field t) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t
liftMatrix2 f m1 m2 | compat m1 m2 = reshape (cols m1) (f (cdat m1) (cdat m2))
                    | otherwise    = error "nonconformant matrices in liftMatrix2"
------------------------------------------------------------------

compat :: Matrix a -> Matrix b -> Bool
compat m1 m2 = rows m1 == rows m2 && cols m1 == cols m2

dotL a b = sum (zipWith (*) a b)

multiplyL a b | ok = [[dotL x y | y <- transpose b] | x <- a]
              | otherwise = error "inconsistent dimensions in contraction "
    where ok = case common length a of
                   Nothing -> False
                   Just c  -> c == length b

transL m = matrixFromVector RowMajor (rows m) $ transdata (cols m) (cdat m) (rows m)

multiplyG a b = matrixFromVector RowMajor (cols b) $ fromList $ concat $ multiplyL (toLists a) (toLists b)

------------------------------------------------------------------

gmatC m f | fortran m =
                if (isTrans m)
                    then f 0 (rows m) (cols m) (ptr (dat m))
                    else f 1 (cols m) (rows m) (ptr (dat m))
         | otherwise =
                if isTrans m
                    then f 1 (cols m) (rows m) (ptr (dat m))
                    else f 0 (rows m) (cols m) (ptr (dat m))


multiplyAux fun order a b = unsafePerformIO $ do
    when (cols a /= rows b) $ error $ "inconsistent dimensions in contraction "++
                                      show (rows a,cols a) ++ " x " ++ show (rows b, cols b)
    r <- createMatrix order (rows a) (cols b)
    fun // gmatC a // gmatC b // mat dat r // check "multiplyAux" [dat a, dat b]
    return r

foreign import ccall safe "aux.h multiplyR"
    cmultiplyR :: Int -> Int -> Int -> Ptr Double
               -> Int -> Int -> Int -> Ptr Double
               -> Int -> Int -> Ptr Double
               -> IO Int

foreign import ccall safe "aux.h multiplyC"
    cmultiplyC :: Int -> Int -> Int -> Ptr (Complex Double)
               -> Int -> Int -> Int -> Ptr (Complex Double)
               -> Int -> Int -> Ptr (Complex Double)
               -> IO Int

multiply :: (Field a) => MatrixOrder -> Matrix a -> Matrix a -> Matrix a
multiply RowMajor a b    = multiplyD RowMajor a b
multiply ColumnMajor a b = m {rows = cols m, cols = rows m, order = ColumnMajor}
    where m = multiplyD RowMajor (trans b) (trans a)


multiplyR = multiplyAux cmultiplyR
multiplyC = multiplyAux cmultiplyC

----------------------------------------------------------------------

-- | extraction of a submatrix of a real matrix
subMatrixR :: (Int,Int) -- ^ (r0,c0) starting position 
           -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
           -> Matrix Double -> Matrix Double
subMatrixR (r0,c0) (rt,ct) x = unsafePerformIO $ do
    r <- createMatrix RowMajor rt ct
    c_submatrixR r0 (r0+rt-1) c0 (c0+ct-1) // mat cdat x // mat cdat r // check "subMatrixR" [dat r]
    return r
foreign import ccall "aux.h submatrixR" c_submatrixR :: Int -> Int -> Int -> Int -> TMM

-- | extraction of a submatrix of a complex matrix
subMatrixC :: (Int,Int) -- ^ (r0,c0) starting position
           -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
           -> Matrix (Complex Double) -> Matrix (Complex Double)
subMatrixC (r0,c0) (rt,ct) x =
    reshape ct . asComplex . cdat .
    subMatrixR (r0,2*c0) (rt,2*ct) .
    reshape (2*cols x) . asReal . cdat $ x

--subMatrix :: (Field a) 
--          => (Int,Int) -- ^ (r0,c0) starting position 
--          -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
--          -> Matrix a -> Matrix a
--subMatrix st sz m
--    | isReal (baseOf.dat) m = scast $ subMatrixR st sz (scast m)
--    | isComp (baseOf.dat) m = scast $ subMatrixC st sz (scast m)
--    | otherwise             = subMatrixG st sz m

subMatrixG (r0,c0) (rt,ct) x = reshape ct $ fromList $ concat $ map (subList c0 ct) (subList r0 rt (toLists x))
    where subList s n = take n . drop s

---------------------------------------------------------------------

diagAux fun msg (v@V {dim = n}) = unsafePerformIO $ do
    m <- createMatrix RowMajor n n
    fun // vec v // mat dat m // check msg [dat m]
    return m {tdat = dat m}

-- | diagonal matrix from a real vector
diagR :: Vector Double -> Matrix Double
diagR = diagAux c_diagR "diagR"
foreign import ccall "aux.h diagR" c_diagR :: TVM

-- | diagonal matrix from a real vector
diagC :: Vector (Complex Double) -> Matrix (Complex Double)
diagC = diagAux c_diagC "diagC"
foreign import ccall "aux.h diagC" c_diagC :: TCVCM

-- | diagonal matrix from a vector
--diag :: (Num a, Field a) => Vector a -> Matrix a
--diag v
--    | isReal (baseOf) v = scast $ diagR (scast v)
--    | isComp (baseOf) v = scast $ diagC (scast v)
--    | otherwise             = diagG v

diagG v = reshape c $ fromList $ [ l!!(i-1) * delta k i | k <- [1..c], i <- [1..c]]
    where c = dim v
          l = toList v
          delta i j | i==j      = 1
                    | otherwise = 0

-- | creates a Matrix from a list of vectors
fromRows :: Field t => [Vector t] -> Matrix t
fromRows vs = case common dim vs of
    Nothing -> error "fromRows applied to [] or to vectors with different sizes"
    Just c  -> reshape c (join vs)

-- | extracts the rows of a matrix as a list of vectors
toRows :: Storable t => Matrix t -> [Vector t]
toRows m = toRows' 0 where
    v = cdat m
    r = rows m
    c = cols m
    toRows' k | k == r*c  = []
              | otherwise = subVector k c v : toRows' (k+c)

-- | Creates a matrix from a list of vectors, as columns
fromColumns :: Field t => [Vector t] -> Matrix t
fromColumns m = trans . fromRows $ m

-- | Creates a list of vectors from the columns of a matrix
toColumns :: Storable t => Matrix t -> [Vector t]
toColumns m = toRows . trans $ m


-- | Reads a matrix position.
(@@>) :: Storable t => Matrix t -> (Int,Int) -> t
infixl 9 @@>
m@M {rows = r, cols = c} @@> (i,j)
    | i<0 || i>=r || j<0 || j>=c = error "matrix indexing out of range"
    | otherwise   = cdat m `at` (i*c+j)

------------------------------------------------------------------

constantR :: Double -> Int -> Vector Double
constantR = constantAux cconstantR

constantC :: Complex Double -> Int -> Vector (Complex Double)
constantC = constantAux cconstantC

constantAux fun x n = unsafePerformIO $ do
    v <- createVector n
    px <- newArray [x]
    fun px // vec v // check "constantAux" []
    free px
    return v

foreign import ccall safe "aux.h constantR"
    cconstantR :: Ptr Double -> TV -- Double :> IO Int

foreign import ccall safe "aux.h constantC"
    cconstantC :: Ptr (Complex Double) -> TCV -- Complex Double :> IO Int