summaryrefslogtreecommitdiff
path: root/lib/Data/Packed/Internal/Matrix.hs
blob: 2db48383291ca5366b484731494f55b89ef1a3d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
{-# OPTIONS_GHC -fglasgow-exts #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Packed.Internal.Matrix
-- Copyright   :  (c) Alberto Ruiz 2007
-- License     :  GPL-style
--
-- Maintainer  :  Alberto Ruiz <aruiz@um.es>
-- Stability   :  provisional
-- Portability :  portable (uses FFI)
--
-- Internal matrix representation
--
-----------------------------------------------------------------------------
-- --#hide

module Data.Packed.Internal.Matrix where

import Data.Packed.Internal.Common
import Data.Packed.Internal.Vector

import Foreign hiding (xor)
import Complex
import Control.Monad(when)
import Data.List(transpose,intersperse)
import Data.Maybe(fromJust)

-----------------------------------------------------------------

{- Design considerations for the Matrix Type
   -----------------------------------------

- we must easily handle both row major and column major order,
  for bindings to LAPACK and GSL/C

- we'd like to simplify redundant matrix transposes:
   - Some of them arise from the order requirements of some functions
   - some functions (matrix product) admit transposed arguments

- maybe we don't really need this kind of simplification:
   - more complex code
   - some computational overhead
   - only appreciable gain in code with a lot of redundant transpositions
     and cheap matrix computations

- we could carry both the matrix and its (lazily computed) transpose.
  This may save some transpositions, but it is necessary to keep track of the
  data which is actually computed to be used by functions like the matrix product
  which admit both orders. Therefore, maybe it is better to have something like
  viewC and viewF, which may actually perform a transpose if required.

- but if we need the transposed data and it is not in the structure, we must make
  sure that we touch the same foreignptr that is used in the computation. Access
  to such pointer cannot be made by creating a new vector.

-}

data MatrixOrder = RowMajor | ColumnMajor deriving (Show,Eq)

data Matrix t = MC { rows :: Int, cols :: Int, cdat :: Vector t, fdat :: Vector t }
              | MF { rows :: Int, cols :: Int, fdat :: Vector t, cdat :: Vector t }

-- transposition just changes the data order
trans :: Matrix t -> Matrix t
trans MC {rows = r, cols = c, cdat = d, fdat = dt } = MF {rows = c, cols = r, fdat = d, cdat = dt }
trans MF {rows = r, cols = c, fdat = d, cdat = dt } = MC {rows = c, cols = r, cdat = d, fdat = dt }

dat MC { cdat = d } = d
dat MF { fdat = d } = d

mat d m f = f (rows m) (cols m) (ptr (d m))

type Mt t s = Int -> Int -> Ptr t -> s
-- not yet admitted by my haddock version
-- infixr 6 ::>
-- type t ::> s = Mt t s

-- | the inverse of 'Data.Packed.Matrix.fromLists'
toLists :: (Field t) => Matrix t -> [[t]]
toLists m = partit (cols m) . toList . cdat $ m

-- | creates a Matrix from a list of vectors
fromRows :: Field t => [Vector t] -> Matrix t
fromRows vs = case common dim vs of
    Nothing -> error "fromRows applied to [] or to vectors with different sizes"
    Just c  -> reshape c (join vs)

-- | extracts the rows of a matrix as a list of vectors
toRows :: Field t => Matrix t -> [Vector t]
toRows m = toRows' 0 where
    v = cdat m
    r = rows m
    c = cols m
    toRows' k | k == r*c  = []
              | otherwise = subVector k c v : toRows' (k+c)

-- | Creates a matrix from a list of vectors, as columns
fromColumns :: Field t => [Vector t] -> Matrix t
fromColumns m = trans . fromRows $ m

-- | Creates a list of vectors from the columns of a matrix
toColumns :: Field t => Matrix t -> [Vector t]
toColumns m = toRows . trans $ m


-- | Reads a matrix position.
(@@>) :: Storable t => Matrix t -> (Int,Int) -> t
infixl 9 @@>
--m@M {rows = r, cols = c} @@> (i,j)
--    | i<0 || i>=r || j<0 || j>=c = error "matrix indexing out of range"
--    | otherwise   = cdat m `at` (i*c+j)

MC {rows = r, cols = c, cdat = v} @@> (i,j)
    | i<0 || i>=r || j<0 || j>=c = error "matrix indexing out of range"
    | otherwise                  = v `at` (i*c+j)

MF {rows = r, cols = c, fdat = v} @@> (i,j)
    | i<0 || i>=r || j<0 || j>=c = error "matrix indexing out of range"
    | otherwise                  = v `at` (j*r+i)

------------------------------------------------------------------

matrixFromVector RowMajor c v = MC { rows = r, cols = c, cdat = v, fdat = transdata c v r }
    where (d,m) = dim v `divMod` c
          r | m==0 = d
            | otherwise = error "matrixFromVector"

matrixFromVector ColumnMajor c v = MF { rows = r, cols = c, fdat = v, cdat = transdata r v c }
    where (d,m) = dim v `divMod` c
          r | m==0 = d
            | otherwise = error "matrixFromVector"

createMatrix order r c = do
    p <- createVector (r*c)
    return (matrixFromVector order c p)

{- | Creates a matrix from a vector by grouping the elements in rows with the desired number of columns.

@\> reshape 4 ('fromList' [1..12])
(3><4)
 [ 1.0,  2.0,  3.0,  4.0
 , 5.0,  6.0,  7.0,  8.0
 , 9.0, 10.0, 11.0, 12.0 ]@

-}
reshape :: Field t => Int -> Vector t -> Matrix t
reshape c v = matrixFromVector RowMajor c v

singleton x = reshape 1 (fromList [x])

liftMatrix :: (Field a, Field b) => (Vector a -> Vector b) -> Matrix a -> Matrix b
liftMatrix f MC { cols = c, cdat = d } = matrixFromVector RowMajor    c (f d)
liftMatrix f MF { cols = c, fdat = d } = matrixFromVector ColumnMajor c (f d)


liftMatrix2 :: (Field t, Field a, Field b) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t
liftMatrix2 f m1 m2
    | not (compat m1 m2) = error "nonconformant matrices in liftMatrix2"
    | otherwise = case m1 of
        MC {} -> matrixFromVector RowMajor    (cols m1) (f (cdat m1) (cdat m2))
        MF {} -> matrixFromVector ColumnMajor (cols m1) (f (fdat m1) (fdat m2))


compat :: Matrix a -> Matrix b -> Bool
compat m1 m2 = rows m1 == rows m2 && cols m1 == cols m2

----------------------------------------------------------------

-- | element types for which optimized matrix computations are provided
class Storable a => Field a where
    -- | @constant val n@ creates a vector with @n@ elements, all equal to @val@.
    constant :: a -> Int -> Vector a
    transdata :: Int -> Vector a -> Int -> Vector a
    multiplyD :: MatrixOrder -> Matrix a -> Matrix a -> Matrix a
    -- | extracts a submatrix froma a matrix
    subMatrix :: (Int,Int) -- ^ (r0,c0) starting position 
              -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
              -> Matrix a -> Matrix a
    -- | creates a square matrix with the given diagonal
    diag :: Vector a -> Matrix a

instance Field Double where
    constant  = constantR
    transdata = transdataR
    multiplyD = multiplyR
    subMatrix = subMatrixR
    diag      = diagR

instance Field (Complex Double) where
    constant  = constantC
    transdata = transdataC
    multiplyD = multiplyC
    subMatrix = subMatrixC
    diag      = diagC

------------------------------------------------------------------

instance (Show a, Field a) => (Show (Matrix a)) where
    show m = (sizes++) . dsp . map (map show) . toLists $ m
        where sizes = "("++show (rows m)++"><"++show (cols m)++")\n"

dsp as = (++" ]") . (" ["++) . init . drop 2 . unlines . map (" , "++) . map unwords' $ transpose mtp
    where
        mt = transpose as
        longs = map (maximum . map length) mt
        mtp = zipWith (\a b -> map (pad a) b) longs mt
        pad n str = replicate (n - length str) ' ' ++ str
        unwords' = concat . intersperse ", "

------------------------------------------------------------------

transdataR :: Int -> Vector Double -> Int -> Vector Double
transdataR = transdataAux ctransR

transdataC :: Int -> Vector (Complex Double) -> Int -> Vector (Complex Double)
transdataC = transdataAux ctransC

transdataAux fun c1 d c2 =
    if noneed
        then d
        else unsafePerformIO $ do
            v <- createVector (dim d)
            fun r1 c1 (ptr d) r2 c2 (ptr v) // check "transdataAux" [d]
            --putStrLn "---> transdataAux"
            return v
  where r1 = dim d `div` c1
        r2 = dim d `div` c2
        noneed = r1 == 1 || c1 == 1

foreign import ccall safe "aux.h transR"
    ctransR :: TMM -- Double ::> Double ::> IO Int
foreign import ccall safe "aux.h transC"
    ctransC :: TCMCM -- Complex Double ::> Complex Double ::> IO Int

------------------------------------------------------------------

gmatC MF {rows = r, cols = c, fdat = d} f = f 1 c r (ptr d)
gmatC MC {rows = r, cols = c, cdat = d} f = f 0 r c (ptr d)

multiplyAux fun order a b = unsafePerformIO $ do
    when (cols a /= rows b) $ error $ "inconsistent dimensions in contraction "++
                                      show (rows a,cols a) ++ " x " ++ show (rows b, cols b)
    r <- createMatrix order (rows a) (cols b)
    fun // gmatC a // gmatC b // mat dat r // check "multiplyAux" [dat a, dat b]
    return r

multiplyR = multiplyAux cmultiplyR
foreign import ccall safe "aux.h multiplyR"
    cmultiplyR :: Int -> Int -> Int -> Ptr Double
               -> Int -> Int -> Int -> Ptr Double
               -> Int -> Int -> Ptr Double
               -> IO Int

multiplyC = multiplyAux cmultiplyC
foreign import ccall safe "aux.h multiplyC"
    cmultiplyC :: Int -> Int -> Int -> Ptr (Complex Double)
               -> Int -> Int -> Int -> Ptr (Complex Double)
               -> Int -> Int -> Ptr (Complex Double)
               -> IO Int

multiply :: (Field a) => MatrixOrder -> Matrix a -> Matrix a -> Matrix a
multiply RowMajor a b    = multiplyD RowMajor a b
multiply ColumnMajor a b = MF {rows = c, cols = r, fdat = d, cdat = dt }
    where MC {rows = r, cols = c, cdat = d, fdat = dt } = multiplyD RowMajor (trans b) (trans a)
-- FIXME using MatrixFromVector

----------------------------------------------------------------------

-- | extraction of a submatrix of a real matrix
subMatrixR :: (Int,Int) -- ^ (r0,c0) starting position 
           -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
           -> Matrix Double -> Matrix Double
subMatrixR (r0,c0) (rt,ct) x = unsafePerformIO $ do
    r <- createMatrix RowMajor rt ct
    c_submatrixR r0 (r0+rt-1) c0 (c0+ct-1) // mat cdat x // mat dat r // check "subMatrixR" [dat r]
    return r
foreign import ccall "aux.h submatrixR" c_submatrixR :: Int -> Int -> Int -> Int -> TMM

-- | extraction of a submatrix of a complex matrix
subMatrixC :: (Int,Int) -- ^ (r0,c0) starting position
           -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
           -> Matrix (Complex Double) -> Matrix (Complex Double)
subMatrixC (r0,c0) (rt,ct) x =
    reshape ct . asComplex . cdat .
    subMatrixR (r0,2*c0) (rt,2*ct) .
    reshape (2*cols x) . asReal . cdat $ x

---------------------------------------------------------------------

diagAux fun msg (v@V {dim = n}) = unsafePerformIO $ do
    m <- createMatrix RowMajor n n
    fun // vec v // mat cdat m // check msg [dat m]
    return m -- {tdat = dat m}

-- | diagonal matrix from a real vector
diagR :: Vector Double -> Matrix Double
diagR = diagAux c_diagR "diagR"
foreign import ccall "aux.h diagR" c_diagR :: TVM

-- | diagonal matrix from a real vector
diagC :: Vector (Complex Double) -> Matrix (Complex Double)
diagC = diagAux c_diagC "diagC"
foreign import ccall "aux.h diagC" c_diagC :: TCVCM

------------------------------------------------------------------------

constantAux fun x n = unsafePerformIO $ do
    v <- createVector n
    px <- newArray [x]
    fun px // vec v // check "constantAux" []
    free px
    return v

constantR :: Double -> Int -> Vector Double
constantR = constantAux cconstantR
foreign import ccall safe "aux.h constantR"
    cconstantR :: Ptr Double -> TV -- Double :> IO Int

constantC :: Complex Double -> Int -> Vector (Complex Double)
constantC = constantAux cconstantC
foreign import ccall safe "aux.h constantC"
    cconstantC :: Ptr (Complex Double) -> TCV -- Complex Double :> IO Int

-------------------------------------------------------------------------

-- Generic definitions

{-
transL m = matrixFromVector RowMajor (rows m) $ transdata (cols m) (cdat m) (rows m)

subMatrixG (r0,c0) (rt,ct) x = matrixFromVector RowMajor ct $ fromList $ concat $ map (subList c0 ct) (subList r0 rt (toLists x))
    where subList s n = take n . drop s

diagG v = matrixFromVector RowMajor c $ fromList $ [ l!!(i-1) * delta k i | k <- [1..c], i <- [1..c]]
    where c = dim v
          l = toList v
          delta i j | i==j      = 1
                    | otherwise = 0
-}

transdataG c1 d c2 = fromList . concat . transpose . partit c1 . toList $ d

dotL a b = sum (zipWith (*) a b)

multiplyG a b = matrixFromVector RowMajor (cols b) $ fromList $ concat $ multiplyL (toLists a) (toLists b)

multiplyL a b | ok = [[dotL x y | y <- transpose b] | x <- a]
              | otherwise = error "inconsistent dimensions in contraction "
    where ok = case common length a of
                   Nothing -> False
                   Just c  -> c == length b