summaryrefslogtreecommitdiff
path: root/lib/Data/Packed/Internal/Matrix.hs
blob: fccf8bbc66877cc3ea6b979c2cda1f403ca4c719 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
{-# OPTIONS_GHC -fglasgow-exts #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Packed.Internal.Matrix
-- Copyright   :  (c) Alberto Ruiz 2007
-- License     :  GPL-style
--
-- Maintainer  :  Alberto Ruiz <aruiz@um.es>
-- Stability   :  provisional
-- Portability :  portable (uses FFI)
--
-- Fundamental types
--
-----------------------------------------------------------------------------

module Data.Packed.Internal.Matrix where

import Data.Packed.Internal.Common
import Data.Packed.Internal.Vector

import Foreign hiding (xor)
import Complex
import Control.Monad(when)
import Data.List(transpose,intersperse)
import Data.Typeable
import Data.Maybe(fromJust)


data MatrixOrder = RowMajor | ColumnMajor deriving (Show,Eq)

-- | 2D array
data Matrix t = M { rows    :: Int
                  , cols    :: Int
                  , dat     :: Vector t
                  , tdat    :: Vector t
                  , isTrans :: Bool
                  , order   :: MatrixOrder
                  } deriving Typeable



fortran m = order m == ColumnMajor

cdat m = if fortran m `xor` isTrans m then tdat m else dat m
fdat m = if fortran m `xor` isTrans m then dat m else tdat m

trans m = m { rows = cols m
            , cols = rows m
            , isTrans = not (isTrans m)
            }

type Mt t s = Int -> Int -> Ptr t -> s
infixr 6 ::>
type t ::> s = Mt t s

mat d m f = f (rows m) (cols m) (ptr (d m))

toLists m = partit (cols m) . toList . cdat $ m

instance (Show a, Storable a) => (Show (Matrix a)) where
    show m = (sizes++) . dsp . map (map show) . toLists $ m
        where sizes = "("++show (rows m)++"><"++show (cols m)++")\n"

dsp as = (++" ]") . (" ["++) . init . drop 2 . unlines . map (" , "++) . map unwords' $ transpose mtp
    where
        mt = transpose as
        longs = map (maximum . map length) mt
        mtp = zipWith (\a b -> map (pad a) b) longs mt
        pad n str = replicate (n - length str) ' ' ++ str
        unwords' = concat . intersperse ", "

matrixFromVector RowMajor c v =
    M { rows = r
      , cols = c
      , dat  = v
      , tdat = transdata c v r
      , order = RowMajor
      , isTrans = False
      } where r = dim v `div` c -- TODO check mod=0

matrixFromVector ColumnMajor c v =
    M { rows = r
      , cols = c
      , dat  = v
      , tdat = transdata r v c
      , order = ColumnMajor
      , isTrans = False
      } where r = dim v `div` c -- TODO check mod=0

createMatrix order r c = do
    p <- createVector (r*c)
    return (matrixFromVector order c p)

reshape c v = matrixFromVector RowMajor c v

singleton x = reshape 1 (fromList [x])

transdataG :: Storable a => Int -> Vector a -> Int -> Vector a 
transdataG c1 d c2 = fromList . concat . transpose . partit c1 . toList $ d

transdataR :: Int -> Vector Double -> Int -> Vector Double
transdataR = transdataAux ctransR

transdataC :: Int -> Vector (Complex Double) -> Int -> Vector (Complex Double)
transdataC = transdataAux ctransC

transdataAux fun c1 d c2 =
    if noneed
        then d
        else unsafePerformIO $ do
            v <- createVector (dim d)
            fun r1 c1 (ptr d) r2 c2 (ptr v) // check "transdataAux" [d]
            --putStrLn "---> transdataAux"
            return v
  where r1 = dim d `div` c1
        r2 = dim d `div` c2
        noneed = r1 == 1 || c1 == 1

foreign import ccall safe "aux.h transR"
    ctransR :: Double ::> Double ::> IO Int
foreign import ccall safe "aux.h transC"
    ctransC :: Complex Double ::> Complex Double ::> IO Int

transdata :: Field a => Int -> Vector a -> Int -> Vector a
transdata c1 d c2 | isReal baseOf d = scast $ transdataR c1 (scast d) c2
                  | isComp baseOf d = scast $ transdataC c1 (scast d) c2
                  | otherwise       = transdataG c1 d c2

--transdata :: Storable a => Int -> Vector a -> Int -> Vector a 
--transdata = transdataG
--{-# RULES "transdataR" transdata=transdataR #-}
--{-# RULES "transdataC" transdata=transdataC #-}

-----------------------------------------------------------------

liftMatrix f m = m { dat = f (dat m), tdat = f (tdat m) } -- check sizes
liftMatrix2 f m1 m2 = reshape (cols m1) (f (cdat m1) (cdat m2)) -- check sizes

------------------------------------------------------------------

dotL a b = sum (zipWith (*) a b)

multiplyL a b | ok = [[dotL x y | y <- transpose b] | x <- a]
              | otherwise = error "inconsistent dimensions in contraction "
    where ok = case common length a of
                   Nothing -> False
                   Just c  -> c == length b

transL m = matrixFromVector RowMajor (rows m) $ transdataG (cols m) (cdat m) (rows m)

multiplyG a b = matrixFromVector RowMajor (cols b) $ fromList $ concat $ multiplyL (toLists a) (toLists b)

------------------------------------------------------------------

gmatC m f | fortran m =
                if (isTrans m)
                    then f 0 (rows m) (cols m) (ptr (dat m))
                    else f 1 (cols m) (rows m) (ptr (dat m))
         | otherwise =
                if isTrans m
                    then f 1 (cols m) (rows m) (ptr (dat m))
                    else f 0 (rows m) (cols m) (ptr (dat m))


multiplyAux order fun a b = unsafePerformIO $ do
    when (cols a /= rows b) $ error $ "inconsistent dimensions in contraction "++
                                      show (rows a,cols a) ++ " x " ++ show (rows b, cols b)
    r <- createMatrix order (rows a) (cols b)
    fun // gmatC a // gmatC b // mat dat r // check "multiplyAux" [dat a, dat b]
    return r

foreign import ccall safe "aux.h multiplyR"
    cmultiplyR :: Int -> Double ::> (Int -> Double ::> (Double ::> IO Int))

foreign import ccall safe "aux.h multiplyC"
    cmultiplyC :: Int -> Complex Double ::> (Int -> Complex Double ::> (Complex Double ::> IO Int))

multiply :: (Num a, Field a) => MatrixOrder -> Matrix a -> Matrix a -> Matrix a
multiply RowMajor a b    = multiplyD RowMajor a b
multiply ColumnMajor a b = m {rows = cols m, cols = rows m, order = ColumnMajor}
    where m = multiplyD RowMajor (trans b) (trans a)

multiplyD order a b
    | isReal (baseOf.dat) a = scast $ multiplyAux order cmultiplyR (scast a) (scast b)
    | isComp (baseOf.dat) a = scast $ multiplyAux order cmultiplyC (scast a) (scast b)
    | otherwise             = multiplyG a b

----------------------------------------------------------------------

outer u v = dat (multiply RowMajor r c)
    where r = matrixFromVector RowMajor 1 u
          c = matrixFromVector RowMajor (dim v) v

dot u v = dat (multiply RowMajor r c) `at` 0
    where r = matrixFromVector RowMajor (dim u) u
          c = matrixFromVector RowMajor 1 v

----------------------------------------------------------------------

-- | extraction of a submatrix of a real matrix
subMatrixR :: (Int,Int) -- ^ (r0,c0) starting position 
           -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
           -> Matrix Double -> Matrix Double
subMatrixR (r0,c0) (rt,ct) x = unsafePerformIO $ do
    r <- createMatrix RowMajor rt ct
    c_submatrixR r0 (r0+rt-1) c0 (c0+ct-1) // mat cdat x // mat cdat r // check "subMatrixR" [dat r]
    return r
foreign import ccall "aux.h submatrixR"
    c_submatrixR :: Int -> Int -> Int -> Int -> Double ::> Double ::> IO Int

-- | extraction of a submatrix of a complex matrix
subMatrixC :: (Int,Int) -- ^ (r0,c0) starting position
           -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
           -> Matrix (Complex Double) -> Matrix (Complex Double)
subMatrixC (r0,c0) (rt,ct) x =
    reshape ct . asComplex . cdat .
    subMatrixR (r0,2*c0) (rt,2*ct) .
    reshape (2*cols x) . asReal . cdat $ x

subMatrix :: (Field a) 
          => (Int,Int) -- ^ (r0,c0) starting position 
          -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
          -> Matrix a -> Matrix a
subMatrix st sz m
    | isReal (baseOf.dat) m = scast $ subMatrixR st sz (scast m)
    | isComp (baseOf.dat) m = scast $ subMatrixC st sz (scast m)
    | otherwise             = subMatrixG st sz m

subMatrixG (r0,c0) (rt,ct) x = reshape ct $ fromList $ concat $ map (subList c0 ct) (subList r0 rt (toLists x))
    where subList s n = take n . drop s

---------------------------------------------------------------------

diagAux fun msg (v@V {dim = n}) = unsafePerformIO $ do
    m <- createMatrix RowMajor n n
    fun // vec v // mat dat m // check msg [dat m]
    return m {tdat = dat m}

-- | diagonal matrix from a real vector
diagR :: Vector Double -> Matrix Double
diagR = diagAux c_diagR "diagR"
foreign import ccall "aux.h diagR" c_diagR :: Double :> Double ::> IO Int

-- | diagonal matrix from a real vector
diagC :: Vector (Complex Double) -> Matrix (Complex Double)
diagC = diagAux c_diagC "diagC"
foreign import ccall "aux.h diagC" c_diagC :: (Complex Double) :> (Complex Double) ::> IO Int

-- | diagonal matrix from a vector
diag :: (Num a, Field a) => Vector a -> Matrix a
diag v
    | isReal (baseOf) v = scast $ diagR (scast v)
    | isComp (baseOf) v = scast $ diagC (scast v)
    | otherwise             = diagG v

diagG v = reshape c $ fromList $ [ l!!(i-1) * delta k i | k <- [1..c], i <- [1..c]]
    where c = dim v
          l = toList v
          delta i j | i==j      = 1
                    | otherwise = 0

-- | creates a Matrix from a list of vectors
fromRows :: Field t => [Vector t] -> Matrix t
fromRows vs = case common dim vs of
    Nothing -> error "fromRows applied to [] or to vectors with different sizes"
    Just c  -> reshape c (join vs)

-- | extracts the rows of a matrix as a list of vectors
toRows :: Storable t => Matrix t -> [Vector t]
toRows m = toRows' 0 where
    v = cdat m
    r = rows m
    c = cols m
    toRows' k | k == r*c  = []
              | otherwise = subVector k c v : toRows' (k+c)

-- | Creates a matrix from a list of vectors, as columns
fromColumns :: Field t => [Vector t] -> Matrix t
fromColumns m = trans . fromRows $ m

-- | Creates a list of vectors from the columns of a matrix
toColumns :: Field t => Matrix t -> [Vector t]
toColumns m = toRows . trans $ m


-- | Reads a matrix position.
(@@>) :: Field t => Matrix t -> (Int,Int) -> t
infixl 9 @@>
m@M {rows = r, cols = c} @@> (i,j)
    | i<0 || i>=r || j<0 || j>=c = error "matrix indexing out of range"
    | otherwise   = cdat m `at` (i*c+j)