1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.Packed.Internal.Tensor
-- Copyright : (c) Alberto Ruiz 2007
-- License : GPL-style
--
-- Maintainer : Alberto Ruiz <aruiz@um.es>
-- Stability : provisional
-- Portability : portable (uses FFI)
--
-- support for basic tensor operations
--
-----------------------------------------------------------------------------
module Data.Packed.Internal.Tensor where
import Data.Packed.Internal
import Foreign.Storable
import Data.List(sort,elemIndex,nub,foldl1',foldl')
import GSL.Vector
import Data.Packed.Matrix
data IdxType = Covariant | Contravariant deriving (Show,Eq)
type IdxName = String
data IdxDesc = IdxDesc { idxDim :: Int,
idxType :: IdxType,
idxName :: IdxName } deriving Eq
instance Show IdxDesc where
show (IdxDesc n t name) = name ++ sym t ++"["++show n++"]"
where sym Covariant = "_"
sym Contravariant = "^"
data Tensor t = T { dims :: [IdxDesc]
, ten :: Vector t
}
-- | returns the coordinates of a tensor in row - major order
coords :: Tensor t -> Vector t
coords = ten
instance (Show a, Field a) => Show (Tensor a) where
show T {dims = [], ten = t} = "scalar "++show (t `at` 0)
show t = "("++shdims (dims t) ++") "++ showdt t
asMatrix t = reshape (idxDim $ dims t!!1) (ten t)
showdt t | rank t == 1 = show (toList (ten t))
| rank t == 2 = ('\n':) . dsp . map (map show) . toLists $ asMatrix $ t
| otherwise = concatMap showdt $ parts t (head (names t))
-- | a nice description of the tensor structure
shdims :: [IdxDesc] -> String
shdims [] = ""
shdims [d] = show d
shdims (d:ds) = show d ++ "><"++ shdims ds
-- | tensor rank (number of indices)
rank :: Tensor t -> Int
rank = length . dims
names :: Tensor t -> [IdxName]
names t = map idxName (dims t)
-- | number of contravariant and covariant indices
structure :: Tensor t -> (Int,Int)
structure t = (rank t - n, n) where
n = length $ filter isCov (dims t)
isCov d = idxType d == Covariant
-- | creates a rank-zero tensor from a scalar
scalar :: Storable t => t -> Tensor t
scalar x = T [] (fromList [x])
-- | Creates a tensor from a signed list of dimensions (positive = contravariant, negative = covariant) and a Vector containing the coordinates in row major order.
tensor :: [Int] -> Vector a -> Tensor a
tensor dssig vec = T d v `withIdx` seqind where
n = product (map abs dssig)
v = if dim vec == n then vec else error "wrong arguments for tensor"
d = map cr dssig
cr n | n > 0 = IdxDesc {idxName = "", idxDim = n, idxType = Contravariant}
| n < 0 = IdxDesc {idxName = "", idxDim = -n, idxType = Covariant }
tensorFromVector :: IdxType -> Vector t -> Tensor t
tensorFromVector tp v = T {dims = [IdxDesc (dim v) tp "1"], ten = v}
tensorFromMatrix :: IdxType -> IdxType -> Matrix t -> Tensor t
tensorFromMatrix tpr tpc m = T {dims = [IdxDesc (rows m) tpr "1",IdxDesc (cols m) tpc "2"]
, ten = cdat m}
liftTensor :: (Vector a -> Vector b) -> Tensor a -> Tensor b
liftTensor f (T d v) = T d (f v)
liftTensor2 :: (Vector a -> Vector b -> Vector c) -> Tensor a -> Tensor b -> Tensor c
liftTensor2 f (T d1 v1) (T d2 v2) | compat d1 d2 = T d1 (f v1 v2)
| otherwise = error "liftTensor2 with incompatible tensors"
where compat a b = length a == length b
-- | express the tensor as a matrix with the given index in columns
findIdx :: (Field t) => IdxName -> Tensor t
-> (([IdxDesc], [IdxDesc]), Matrix t)
findIdx name t = ((d1,d2),m) where
(d1,d2) = span (\d -> idxName d /= name) (dims t)
c = product (map idxDim d2)
m = matrixFromVector RowMajor c (ten t)
-- | express the tensor as a matrix with the given index in rows
putFirstIdx :: (Field t) => String -> Tensor t -> ([IdxDesc], Matrix t)
putFirstIdx name t = (nd,m')
where ((d1,d2),m) = findIdx name t
m' = matrixFromVector RowMajor c $ cdat $ trans m
nd = d2++d1
c = dim (ten t) `div` (idxDim $ head d2)
-- | renames all the indices in the current order (repeated indices may get different names)
withIdx :: Tensor t -> [IdxName] -> Tensor t
withIdx (T d v) l = T d' v
where d' = zipWith f d l
f i n = i {idxName=n}
-- | raises or lowers all the indices of a tensor (with euclidean metric)
raise :: Tensor t -> Tensor t
raise (T d v) = T (map raise' d) v
where raise' idx@IdxDesc {idxType = Covariant } = idx {idxType = Contravariant}
raise' idx@IdxDesc {idxType = Contravariant } = idx {idxType = Covariant}
-- | index transposition to a desired order. You can specify only a subset of the indices, which will be moved to the front of indices list
tridx :: (Field t) => [IdxName] -> Tensor t -> Tensor t
tridx [] t = t
tridx (name:rest) t = T (d:ds) (join ts) where
((_,d:_),_) = findIdx name t
ps = map (tridx rest) (parts t name)
ts = map ten ps
ds = dims (head ps)
-- | extracts a given part of a tensor
part :: (Field t) => Tensor t -> (IdxName, Int) -> Tensor t
part t (name,k) = if k<0 || k>=l
then error $ "part "++show (name,k)++" out of range" -- in "++show t
else T {dims = ds, ten = toRows m !! k}
where (d:ds,m) = putFirstIdx name t
l = idxDim d
-- | creates a list with all parts of a tensor along a given index
parts :: (Field t) => Tensor t -> IdxName -> [Tensor t]
parts t name = map f (toRows m)
where (d:ds,m) = putFirstIdx name t
l = idxDim d
f t = T {dims=ds, ten=t}
compatIdx :: (Field t1, Field t) => Tensor t1 -> IdxName -> Tensor t -> IdxName -> Bool
compatIdx t1 n1 t2 n2 = compatIdxAux d1 d2 where
d1 = head $ snd $ fst $ findIdx n1 t1
d2 = head $ snd $ fst $ findIdx n2 t2
compatIdxAux IdxDesc {idxDim = n1, idxType = t1}
IdxDesc {idxDim = n2, idxType = t2}
= t1 /= t2 && n1 == n2
-- | tensor product without without any contractions
rawProduct :: (Field t, Num t) => Tensor t -> Tensor t -> Tensor t
rawProduct (T d1 v1) (T d2 v2) = T (d1++d2) (outer' v1 v2)
-- | contraction of the product of two tensors
contraction2 :: (Field t, Num t) => Tensor t -> IdxName -> Tensor t -> IdxName -> Tensor t
contraction2 t1 n1 t2 n2 =
if compatIdx t1 n1 t2 n2
then T (tail d1 ++ tail d2) (cdat m)
else error "wrong contraction2"
where (d1,m1) = putFirstIdx n1 t1
(d2,m2) = putFirstIdx n2 t2
m = multiply RowMajor (trans m1) m2
-- | contraction of a tensor along two given indices
contraction1 :: (Field t, Num t) => Tensor t -> IdxName -> IdxName -> Tensor t
contraction1 t name1 name2 =
if compatIdx t name1 t name2
then sumT y
else error $ "wrong contraction1: "++(shdims$dims$t)++" "++name1++" "++name2
where d = dims (head y)
x = (map (flip parts name2) (parts t name1))
y = map head $ zipWith drop [0..] x
-- | contraction of a tensor along a repeated index
contraction1c :: (Field t, Num t) => Tensor t -> IdxName -> Tensor t
contraction1c t n = contraction1 renamed n' n
where n' = n++"'" -- hmmm
renamed = withIdx t auxnames
auxnames = h ++ (n':r)
(h,_:r) = break (==n) (map idxName (dims t))
-- | alternative and inefficient version of contraction2
contraction2' :: (Field t, Enum t, Num t) => Tensor t -> IdxName -> Tensor t -> IdxName -> Tensor t
contraction2' t1 n1 t2 n2 =
if compatIdx t1 n1 t2 n2
then contraction1 (rawProduct t1 t2) n1 n2
else error "wrong contraction'"
-- | applies a sequence of contractions
contractions :: (Field t, Num t) => Tensor t -> [(IdxName, IdxName)] -> Tensor t
contractions t pairs = foldl' contract1b t pairs
where contract1b t (n1,n2) = contraction1 t n1 n2
-- | applies a sequence of contractions of same index
contractionsC :: (Field t, Num t) => Tensor t -> [IdxName] -> Tensor t
contractionsC t is = foldl' contraction1c t is
-- | applies a contraction on the first indices of the tensors
contractionF :: (Field t, Num t) => Tensor t -> Tensor t -> Tensor t
contractionF t1 t2 = contraction2 t1 n1 t2 n2
where n1 = fn t1
n2 = fn t2
fn = idxName . head . dims
-- | computes all compatible contractions of the product of two tensors that would arise if the index names were equal
possibleContractions :: (Num t, Field t) => Tensor t -> Tensor t -> [Tensor t]
possibleContractions t1 t2 = [ contraction2 t1 n1 t2 n2 | n1 <- names t1, n2 <- names t2, compatIdx t1 n1 t2 n2 ]
desiredContractions2 :: Tensor t -> Tensor t1 -> [(IdxName, IdxName)]
desiredContractions2 t1 t2 = [ (n1,n2) | n1 <- names t1, n2 <- names t2, n1==n2]
desiredContractions1 :: Tensor t -> [IdxName]
desiredContractions1 t = [ n1 | (a,n1) <- x , (b,n2) <- x, a/=b, n1==n2]
where x = zip [0..] (names t)
-- | tensor product with the convention that repeated indices are contracted.
mulT :: (Field t, Num t) => Tensor t -> Tensor t -> Tensor t
mulT t1 t2 = r where
t1r = contractionsC t1 (desiredContractions1 t1)
t2r = contractionsC t2 (desiredContractions1 t2)
cs = desiredContractions2 t1r t2r
r = case cs of
[] -> rawProduct t1r t2r
(n1,n2):as -> contractionsC (contraction2 t1r n1 t2r n2) (map fst as)
-----------------------------------------------------------------
-- | tensor addition (for tensors with the same structure)
addT :: (Num a, Field a) => Tensor a -> Tensor a -> Tensor a
addT a b = liftTensor2 add a b
sumT :: (Field a, Num a) => [Tensor a] -> Tensor a
sumT l = foldl1' addT l
-----------------------------------------------------------------
-- sent to Haskell-Cafe by Sebastian Sylvan
perms :: [t] -> [[t]]
perms [x] = [[x]]
perms xs = [y:ps | (y,ys) <- selections xs , ps <- perms ys]
where
selections [] = []
selections (x:xs) = (x,xs) : [(y,x:ys) | (y,ys) <- selections xs]
interchanges :: (Ord a) => [a] -> Int
interchanges ls = sum (map (count ls) ls)
where count l p = length $ filter (>p) $ take pel l
where Just pel = elemIndex p l
signature :: (Num t, Ord a) => [a] -> t
signature l | length (nub l) < length l = 0
| even (interchanges l) = 1
| otherwise = -1
sym :: (Field t, Num t) => Tensor t -> Tensor t
sym t = T (dims t) (ten (sym' (withIdx t seqind)))
where sym' t = sumT $ map (flip tridx t) (perms (names t))
where nms = map idxName . dims
antisym :: (Field t, Num t) => Tensor t -> Tensor t
antisym t = T (dims t) (ten (antisym' (withIdx t seqind)))
where antisym' t = sumT $ map (scsig . flip tridx t) (perms (names t))
scsig t = scalar (signature (nms t)) `rawProduct` t
where nms = map idxName . dims
-- | the wedge product of two tensors (implemented as the antisymmetrization of the ordinary tensor product).
wedge :: (Field t, Fractional t) => Tensor t -> Tensor t -> Tensor t
wedge a b = antisym (rawProduct (norper a) (norper b))
where norper t = rawProduct t (scalar (recip $ fromIntegral $ fact (rank t)))
-- antinorper t = rawProduct t (scalar (fromIntegral $ fact (rank t)))
-- | The euclidean inner product of two completely antisymmetric tensors
innerAT :: (Fractional t, Field t) => Tensor t -> Tensor t -> t
innerAT t1 t2 = dot (ten t1) (ten t2) / fromIntegral (fact $ rank t1)
fact :: (Num t, Enum t) => t -> t
fact n = product [1..n]
seqind' :: [[String]]
seqind' = map return seqind
seqind :: [String]
seqind = map show [1..]
-- | completely antisymmetric covariant tensor of dimension n
leviCivita :: (Field t, Num t) => Int -> Tensor t
leviCivita n = antisym $ foldl1 rawProduct $ zipWith withIdx auxbase seqind'
where auxbase = map tc (toRows (ident n))
tc = tensorFromVector Covariant
-- | contraction of leviCivita with a list of vectors (and raise with euclidean metric)
innerLevi :: (Num t, Field t) => [Tensor t] -> Tensor t
innerLevi vs = raise $ foldl' contractionF (leviCivita n) vs
where n = idxDim . head . dims . head $ vs
-- | obtains the dual of a multivector (with euclidean metric)
dual :: (Field t, Fractional t) => Tensor t -> Tensor t
dual t = raise $ leviCivita n `mulT` withIdx t seqind `rawProduct` x
where n = idxDim . head . dims $ t
x = scalar (recip $ fromIntegral $ fact (rank t))
-- | shows only the relevant components of an antisymmetric tensor
niceAS :: (Field t, Fractional t) => Tensor t -> [(t, [Int])]
niceAS t = filter ((/=0.0).fst) $ zip vals base
where vals = map ((`at` 0).ten.foldl' partF t) (map (map pred) base)
base = asBase r n
r = length (dims t)
n = idxDim . head . dims $ t
partF t i = part t (name,i) where name = idxName . head . dims $ t
asBase r n = filter (\x-> (x==nub x && x==sort x)) $ sequence $ replicate r [1..n]
|